
## Giuseppe Camara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5374035/publications.pdf Version: 2024-02-01



CHISEDDE CAMADA

| #  | Article                                                                                                                                                                                                            | lF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Ethylene glycol oxidation on carbon supported binary PtM (MÂ=ÂRh, Pd an Ni) electrocatalysts in<br>alkaline media. Journal of Electroanalytical Chemistry, 2021, 880, 114859.                                      | 1.9  | 11        |
| 2  | How decoration with Tl affects CO electro-oxidation on Pd (1 0 0) nanocubes: In situ FTIR and ab-initio insights. Journal of Electroanalytical Chemistry, 2021, 886, 115149.                                       | 1.9  | 6         |
| 3  | Platinum single crystal electrodes: Prediction of the surface structures of low and high Miller indexes faces. Results in Surfaces and Interfaces, 2021, 3, 100006.                                                | 1.0  | 10        |
| 4  | Two-step synthesis of Ir-decorated Pd nanocubes and their impact on the glycerol electrooxidation.<br>Journal of Catalysis, 2019, 377, 358-366.                                                                    | 3.1  | 19        |
| 5  | Highly active Pt3Rh/C nanoparticles towards ethanol electrooxidation. Influence of the catalyst structure. Applied Catalysis B: Environmental, 2019, 254, 113-127.                                                 | 10.8 | 38        |
| 6  | Electro-oxidation of ethanol on PtRh surfaces partially covered by Sn. Electrochimica Acta, 2019, 308, 167-173.                                                                                                    | 2.6  | 10        |
| 7  | First Assessments of the Influence of Oxygen Reduction on the Glycerol Electrooxidation Reaction on<br>Pt. Electrocatalysis, 2019, 10, 82-94.                                                                      | 1.5  | 6         |
| 8  | How the adsorption of Sn on Pt (100) preferentially oriented nanoparticles affects the pathways of glycerol electro-oxidation. Electrochimica Acta, 2019, 297, 61-69.                                              | 2.6  | 11        |
| 9  | Oscillatory electro-oxidation of ethanol on platinum studied by in situ ATR-SEIRAS. Electrochimica<br>Acta, 2019, 293, 166-173.                                                                                    | 2.6  | 5         |
| 10 | Alternative Uses for Biodiesel Byproduct: Glycerol as Source of Energy and High Valuable Chemicals.<br>Green Energy and Technology, 2018, , 159-186.                                                               | 0.4  | 14        |
| 11 | Exponential improving in the activity of Pt/C nanoparticles towards glycerol electrooxidation by Sb<br>ad-atoms deposition. Applied Catalysis B: Environmental, 2017, 200, 114-120.                                | 10.8 | 45        |
| 12 | Mobility and Oxidation of Adsorbed CO on Shape-Controlled Pt Nanoparticles in Acidic Medium.<br>Langmuir, 2017, 33, 865-871.                                                                                       | 1.6  | 20        |
| 13 | All at once: how electrochemistry can be used to design and access multiple compositions in a single<br>sample. Journal of Materials Chemistry A, 2017, 5, 22641-22647.                                            | 5.2  | 2         |
| 14 | Glycerol Electrooxidation on Platinum-Tin Electrodeposited Films: Inducing Changes in Surface<br>Composition by Cyclic Voltammetry. Electrocatalysis, 2017, 8, 1-10.                                               | 1.5  | 10        |
| 15 | Estimating the Time-Dependent Performance of Nanocatalysts in Fuel Cells Based on a<br>Cost-Normalization Approach. Journal of the Brazilian Chemical Society, 2016, , .                                           | 0.6  | 2         |
| 16 | Disentangling Catalytic Activity at Terrace and Step Sites on Selectively Ru-Modified Well-Ordered Pt<br>Surfaces Probed by CO Electro-oxidation. ACS Catalysis, 2016, 6, 2997-3007.                               | 5.5  | 27        |
| 17 | How do random superficial defects influence the electro-oxidation of glycerol on Pt(111) surfaces?.<br>Physical Chemistry Chemical Physics, 2016, 18, 25582-25591.                                                 | 1.3  | 37        |
| 18 | The electrooxidation of acetaldehyde on platinum–ruthenium–rhodium surfaces: A delicate balance<br>between oxidation and carbon–carbon bond breaking. Journal of Electroanalytical Chemistry, 2016,<br>765, 73-78. | 1.9  | 5         |

GIUSEPPE CAMARA

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Rh-decorated PtIrO nanoparticles for glycerol electrooxidation: Searching for a stable and active catalyst. Applied Catalysis B: Environmental, 2016, 181, 445-455.                                       | 10.8 | 32        |
| 20 | Establishing a Link between Well-Ordered Pt(100) Surfaces and Real Systems: How Do Random Superficial Defects Influence the Electro-oxidation of Glycerol?. ACS Catalysis, 2015, 5, 4227-4236.            | 5.5  | 48        |
| 21 | Understanding the CO Preoxidation and the Intrinsic Catalytic Activity of Step Sites in Stepped Pt<br>Surfaces in Acidic Medium. Journal of Physical Chemistry C, 2015, 119, 20272-20282.                 | 1.5  | 54        |
| 22 | Evidence for Independent Glycerol Electrooxidation Behavior on Different Ordered Domains of Polycrystalline Platinum. ChemElectroChem, 2015, 2, 263-268.                                                  | 1.7  | 38        |
| 23 | Oxidation of isotopically-labeled ethanol on platinum–tin–rhodium surfaces: Enhancing the production of CO2 from methyl groups. Electrochemistry Communications, 2014, 48, 160-163.                       | 2.3  | 7         |
| 24 | Ethanol vs. glycerol: Understanding the lack of correlation between the oxidation currents and the production of CO2 on Pt nanoparticles. Journal of Electroanalytical Chemistry, 2014, 717-718, 231-236. | 1.9  | 33        |
| 25 | Agglomeration and Cleaning of Carbon Supported Palladium Nanoparticles in Electrochemical Environment. Electrocatalysis, 2014, 5, 204-212.                                                                | 1.5  | 19        |
| 26 | Obtaining Clean and Well-dispersed Pt NPs with a Microwave-assisted Method. Electrocatalysis, 2014, 5, 279.                                                                                               | 1.5  | 5         |
| 27 | Remarkable electrochemical stability of one-step synthesized Pd nanoparticles supported on graphene<br>and multi-walled carbon nanotubes. Nano Energy, 2014, 9, 142-151.                                  | 8.2  | 34        |
| 28 | Ethanol electro-oxidation on partially alloyed Pt-Sn-Rh/C catalysts. Electrochimica Acta, 2014, 147, 483-489.                                                                                             | 2.6  | 47        |
| 29 | Electrooxidation of glycerol on platinum nanoparticles: Deciphering how the position of each carbon affects the oxidation pathways. Electrochimica Acta, 2013, 112, 686-691.                              | 2.6  | 51        |
| 30 | Insights into the electrooxidation of glycolaldehyde on platinum in acidic media. Journal of<br>Electroanalytical Chemistry, 2013, 709, 77-82.                                                            | 1.9  | 2         |
| 31 | Analysis of the selectivity of PtRh/C and PtRhSn/C to the formation of CO2 during ethanol electrooxidation. Electrochimica Acta, 2013, 112, 612-619.                                                      | 2.6  | 35        |
| 32 | Insights into the adsorption and electro-oxidation of glycerol: Self-inhibition and concentration effects. Journal of Catalysis, 2013, 301, 154-161.                                                      | 3.1  | 78        |
| 33 | Platinum nanoparticles produced by EC/PVP method: The effect of cleaning on the electro-oxidation of glycerol. Electrochimica Acta, 2013, 98, 25-31.                                                      | 2.6  | 43        |
| 34 | Influence of the local pH on the electrooxidation of glycerol on Palladium–Rhodium electrodeposits.<br>Journal of Electroanalytical Chemistry, 2013, 697, 15-20.                                          | 1.9  | 50        |
| 35 | Electrooxidation of ethanol on Pt and PtRu surfaces investigated by ATR surface-enhanced infrared absorption spectroscopy. Journal of the Brazilian Chemical Society, 2012, 23, 831-837.                  | 0.6  | 7         |
| 36 | The electro-oxidation of isotopically labeled glycerol on platinum: New information on C–C bond cleavage and CO2 production. Electrochemistry Communications, 2012, 15, 14-17.                            | 2.3  | 42        |

GIUSEPPE CAMARA

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | New insights about the electro-oxidation of glycerol on platinum nanoparticles supported on multi-walled carbon nanotubes. Electrochimica Acta, 2012, 66, 180-187.                         | 2.6 | 74        |
| 38 | PtSnCe/C electrocatalysts for ethanol oxidation: DEFC and FTIR "in-situ―studies. International<br>Journal of Hydrogen Energy, 2011, 36, 11519-11527.                                       | 3.8 | 55        |
| 39 | Rhodium in presence of platinum as a facilitator of carbon–carbon bond break: A composition study.<br>Electrochimica Acta, 2011, 56, 1337-1343.                                            | 2.6 | 26        |
| 40 | Generation of carbon dioxide from glycerol: Evidences of massive production on polycrystalline platinum. Electrochimica Acta, 2011, 56, 4549-4553.                                         | 2.6 | 61        |
| 41 | Search for multi-functional catalysts: The electrooxidation of acetaldehyde on<br>Platinum–Ruthenium–Rhodium electrodeposits. Journal of Electroanalytical Chemistry, 2011, 660,<br>85-90. | 1.9 | 6         |
| 42 | PtSnCe/C and PtSnIr/C Electrocatalysts for Ethanol Oxidation: DEFC and In Situ FTIR studies. ECS Transactions, 2011, 41, 1293-1298.                                                        | 0.3 | 1         |
| 43 | The Electrooxidation of 2-Propanol: An Example of an Alternative Way to Look at In Situ FTIR Data.<br>Electrocatalysis, 2010, 1, 116-121.                                                  | 1.5 | 20        |
| 44 | Methanol electrooxidation at aged PtRu electrodeposits as an approach to understand the effects of time. Journal of Power Sources, 2010, 195, 7221-7224.                                   | 4.0 | 2         |
| 45 | The formation of carbon dioxide during glycerol electrooxidation in alkaline media: First spectroscopic evidences. Electrochemistry Communications, 2010, 12, 1129-1132.                   | 2.3 | 94        |
| 46 | The ethanol electrooxidation reaction at rough PtRu electrodeposits: A FTIRS study. Electrochemistry Communications, 2009, 11, 1586-1589.                                                  | 2.3 | 20        |
| 47 | Preliminary study of ethanol electrooxidation in the presence of sulfate on polycrystalline platinum.<br>Journal of Power Sources, 2008, 185, 853-856.                                     | 4.0 | 22        |
| 48 | Contributions of External Reflection Infrared Spectroscopy to Study the Oxidation of Small Organic Molecules. , 2007, , 33-61.                                                             |     | 5         |
| 49 | Electrooxidation of isotope-labeled ethanol: a FTIRS study. Journal of Solid State Electrochemistry, 2007, 11, 1465-1469.                                                                  | 1.2 | 20        |
| 50 | Catalysis of ethanol electrooxidation by PtRu: the influence of catalyst composition.<br>Electrochemistry Communications, 2004, 6, 812-815.                                                | 2.3 | 170       |
| 51 | CO tolerance on PtMo/C electrocatalysts prepared by the formic acid method. Electrochimica Acta, 2003, 48, 3527-3534.                                                                      | 2.6 | 114       |
| 52 | The CO Poisoning Mechanism of the Hydrogen Oxidation Reaction in Proton Exchange Membrane Fuel<br>Cells. Journal of the Electrochemical Society, 2002, 149, A748.                          | 1.3 | 166       |
| 53 | Effect of thermal treatment on the performance of CO-tolerant anodes for polymer electrolyte fuel cells. Electrochemistry Communications, 2000, 2, 222-225.                                | 2.3 | 74        |
| 54 | Ethylene Glycol Electro-Oxidation on Platinum-Free Surfaces: How the Composition of PdRuRh<br>Surfaces Influences the Catalysis. Journal of the Brazilian Chemical Society, 0, , .         | 0.6 | 2         |