Daniel T Montoro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5373687/publications.pdf

Version: 2024-02-01

42 papers 4,605 citations

28 h-index 276875 41 g-index

51 all docs

51 docs citations

51 times ranked

9427 citing authors

#	Article	IF	CITATIONS
1	Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nature Medicine, 2021, 27, 546-559.	30.7	261
2	COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature, 2021, 595, 107-113.	27.8	537
3	Airway basal stem cells generate distinct subpopulations of PNECs. Cell Reports, 2021, 35, 109011.	6.4	22
4	A Synthesis Concerning Conservation and Divergence of Cell Types across Epithelia. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035733.	5 . 5	6
5	A human ciliopathy reveals essential functions for NEK10 in airway mucociliary clearance. Nature Medicine, 2020, 26, 244-251.	30.7	45
6	Skeletal tissue engineering. , 2020, , 1007-1021.		0
7	The Human Lung Cell Atlas: A High-Resolution Reference Map of the Human Lung in Health and Disease. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 31-41.	2.9	178
8	Submucosal Gland Myoepithelial Cells Are Reserve Stem Cells That Can Regenerate Mouse Tracheal Epithelium. Cell Stem Cell, 2018, 22, 653-667.e5.	11.1	94
9	Developmental History Provides a Roadmap for the Emergence of Tumor Plasticity. Developmental Cell, 2018, 44, 679-693.e5.	7.0	77
10	A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature, 2018, 560, 319-324.	27.8	878
11	Protein–Nanoparticle Hydrogels That Self-assemble in Response to Peptide-Based Molecular Recognition. ACS Biomaterials Science and Engineering, 2017, 3, 750-756.	5.2	22
12	Getting nervous about regeneration. Stem Cell Investigation, 2016, 3, 71-71.	3.0	2
13	TALENâ€mediated gene editing of the <i>thrombospondinâ€4</i> locus in axolotl. Regeneration (Oxford,) Tj ETQ	2q1 1 0.78 6.3	4314 rgBT /C
14	Live Fibroblast Harvest Reveals Surface Marker Shift <i>In Vitro</i> . Tissue Engineering - Part C: Methods, 2015, 21, 314-321.	2.1	26
15	Tumor-propagating cells and Yap/Taz activity contribute to lung tumor progression and metastasis. EMBO Journal, 2014, 33, 468-481.	7.8	181
16	Tumorâ€propagating cells and Yap/Taz activity contribute to lung tumor progression and metastasis. EMBO Journal, 2014, 33, 1502-1502.	7.8	4
17	Skeletal Tissue Engineering. , 2014, , 1289-1302.		2
18	Clonal analysis reveals nerve-dependent and independent roles on mammalian hind limb tissue maintenance and regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9846-9851.	7.1	73

#	Article	IF	Citations
19	Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance. Nature Communications, 2014, 5, 3903.	12.8	148
20	InÂVivo Clonal Analysis Reveals Lineage-Restricted Progenitor Characteristics in Mammalian Kidney Development, Maintenance, and Regeneration. Cell Reports, 2014, 7, 1270-1283.	6.4	199
21	CD90 (Thy-1)-Positive Selection Enhances Osteogenic Capacity of Human Adipose-Derived Stromal Cells. Tissue Engineering - Part A, 2013, 19, 989-997.	3.1	121
22	Enhancing stem cell survival in vivo for tissue repair. Biotechnology Advances, 2013, 31, 736-743.	11.7	54
23	Micro-Computed Tomography Evaluation of Human Fat Grafts in Nude Mice. Tissue Engineering - Part C: Methods, 2013, 19, 227-232.	2.1	46
24	Enhancing In Vivo Survival of Adipose-Derived Stromal Cells Through Bcl-2 Overexpression Using a Minicircle Vector. Stem Cells Translational Medicine, 2013, 2, 690-702.	3.3	30
25	Isolation of Human Adipose-Derived Stromal Cells Using Laser-Assisted Liposuction and Their Therapeutic Potential in Regenerative Medicine. Stem Cells Translational Medicine, 2013, 2, 808-817.	3.3	61
26	Adipose-derived Stromal Cells Overexpressing Vascular Endothelial Growth Factor Accelerate Mouse Excisional Wound Healing. Molecular Therapy, 2013, 21, 445-455.	8.2	86
27	The Seed and the Soil. Annals of Plastic Surgery, 2013, 70, 235-239.	0.9	10
28	Evidence That Mast Cells Are Not Required for Healing of Splinted Cutaneous Excisional Wounds in Mice. PLoS ONE, 2013, 8, e59167.	2.5	40
29	Models of Cranial Suture Biology. Journal of Craniofacial Surgery, 2012, 23, S12-S16.	0.7	36
30	Pierre Robin Sequence and Treacher Collins Hypoplastic Mandible Comparison Using Three-Dimensional Morphometric Analysis. Journal of Craniofacial Surgery, 2012, 23, S17-S21.	0.7	25
31	Enhancement of Human Adipose-Derived Stromal Cell Angiogenesis through Knockdown of a BMP-2 Inhibitor. Plastic and Reconstructive Surgery, 2012, 129, 53-66.	1.4	28
32	Rethinking the Blastema. Plastic and Reconstructive Surgery, 2012, 129, 1097-1103.	1.4	5
33	In vivo directed differentiation of pluripotent stem cells for skeletal regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20379-20384.	7.1	116
34	Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone. Lasers in Surgery and Medicine, 2012, 44, 805-814.	2.1	42
35	Genetic Correction of Huntington's Disease Phenotypes in Induced Pluripotent Stem Cells. Cell Stem Cell, 2012, 11, 253-263.	11.1	336
36	Repair of a Critical-sized Calvarial Defect Model Using Adipose-derived Stromal Cells Harvested from Lipoaspirate. Journal of Visualized Experiments, 2012, , .	0.3	17

#	Article	IF	CITATION
37	Dura mater creates an osteogenic niche that is required for osteogenic tissue engineering using adipose derived stromal cells. Journal of the American College of Surgeons, 2011, 213, S97-S98.	0.5	0
38	Noggin knockdown in human adipose derived stromal cells (hASC) creates a vasculogenic microenvironment. Journal of the American College of Surgeons, 2011, 213, S98-S99.	0.5	0
39	CD105 Protein Depletion Enhances Human Adipose-derived Stromal Cell Osteogenesis through Reduction of Transforming Growth Factor \hat{I}^21 (TGF- \hat{I}^21) Signaling. Journal of Biological Chemistry, 2011, 286, 39497-39509.	3.4	144
40	Dura Mater Stimulates Human Adipose-Derived Stromal Cells to Undergo Bone Formation in Mouse Calvarial Defects. Stem Cells, 2011, 29, 1241-1255.	3.2	92
41	Nonintegrating Knockdown and Customized Scaffold Design Enhances Human Adipose-Derived Stem Cells in Skeletal Repair. Stem Cells, 2011, 29, 2018-2029.	3.2	59
42	Characterization of Human Huntington's Disease Cell Model from Induced Pluripotent Stem Cells. PLOS Currents, 2010, 2, RRN1193.	1.4	216