Yunguo Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5373474/publications.pdf

Version: 2024-02-01

74 4,886 29 65
papers citations h-index g-index

74 74 7529

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 2016, 352, 333-337.	12.6	1,948
2	Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective. Catalysis Science and Technology, 2017, 7, 545-559.	4.1	345
3	Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nature Communications, 2021, 12, 1246.	12.8	274
4	Single-layer MoS2 as an efficient photocatalyst. Catalysis Science and Technology, 2013, 3, 2214.	4.1	271
5	Homogeneous Nucleation Catastrophe as a Kinetic Stability Limit for Superheated Crystal. Physical Review Letters, 1998, 80, 4474-4477.	7.8	229
6	Quantitative comparison of three Ni-containing phases to the elevated-temperature properties of Al–Si piston alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7132-7137.	5 . 6	168
7	Evolution of nickel-rich phases in Al–Si–Cu–Ni–Mg piston alloys with different Cu additions. Materials & Design, 2012, 33, 220-225.	5.1	138
8	Heterostructured WO ₃ @CoWO ₄ bilayer nanosheets for enhanced visible-light photo, electro and photoelectro-chemical oxidation of water. Journal of Materials Chemistry A, 2018, 6, 6265-6272.	10.3	79
9	Distribution of TiB2 particles and its effect on the mechanical properties of A390 alloy. Materials Science & Scienc	5.6	61
10	Supportive strengthening role of Cr-rich phase on Alâ€"Si multicomponent piston alloy at elevated temperature. Materials Science & Degrama: Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4427-4430.	5 . 6	59
11	The elastic properties of hcp-Fe alloys under the conditions of the Earth's inner core. Earth and Planetary Science Letters, 2018, 493, 118-127.	4.4	59
12	General Bottom-Up Colloidal Synthesis of Nano-Monolayer Transition-Metal Dichalcogenides with High 1T′-Phase Purity. Journal of the American Chemical Society, 2022, 144, 4863-4873.	13.7	58
13	The Earth's core as a reservoir of water. Nature Geoscience, 2020, 13, 453-458.	12.9	56
14	Spontaneous Formation of Noble―and Heavyâ€Metalâ€Free Alloyed Semiconductor Quantum Rods for Efficient Photocatalysis. Advanced Materials, 2018, 30, e1803351.	21.0	47
15	A new 2D monolayer BiXene, M ₂ C (M = Mo, Tc, Os). Nanoscale, 2016, 8, 15753-15762.	5.6	46
16	Ni2+/Co2+ doped Au-Fe7S8 nanoplatelets with exceptionally high oxygen evolution reaction activity. Nano Energy, 2021, 89, 106463.	16.0	45
17	Influence of Si and Ti contents on the microstructure, microhardness and performance of TiAlSi intermetallics in Al–Si–Ti alloys. Journal of Alloys and Compounds, 2011, 509, 8013-8017.	5.5	43
18	Melting properties from <i>ab initio</i> free energy calculations: Iron at the Earth's inner-core boundary. Physical Review B, 2018, 98, .	3.2	43

#	Article	IF	CITATIONS
19	Effect of existing form of alloying elements on the microhardness of Al–Si–Cu–Ni–Mg piston alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 5723-5728.	5.6	42
20	A Hydrogen-Initiated Chemical Epitaxial Growth Strategy for In-Plane Heterostructured Photocatalyst. ACS Nano, 2020, 14, 17505-17514.	14.6	41
21	Aligning potential differences within carbon nitride based photocatalysis for efficient solar energy harvesting. Nano Energy, 2021, 89, 106357.	16.0	41
22	Colloidal Single‣ayer Photocatalysts for Methanolâ€Storable Solar H ₂ Fuel. Advanced Materials, 2019, 31, e1905540.	21.0	39
23	A comparative study of metal (Ni, Co, or Mn)-borate catalysts and their photodeposition on rGO/ZnO nanoarrays for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2018, 6, 24149-24156.	10.3	38
24	Regulation of energetic hot carriers on Pt/TiO2 with thermal energy for photothermal catalysis. Applied Catalysis B: Environmental, 2022, 309, 121263.	20.2	38
25	Nonepitaxial Goldâ€Tipped ZnSe Hybrid Nanorods for Efficient Photocatalytic Hydrogen Production. Small, 2020, 16, e1902231.	10.0	37
26	Effects of trace C addition on the microstructure and refining efficiency of Al–Ti–B master alloy. Journal of Alloys and Compounds, 2010, 503, 286-290.	5.5	33
27	Lattice Distortion in Mixed-Anion Lead Halide Perovskite Nanorods Leads to their High Fluorescence Anisotropy., 2020, 2, 814-820.		33
28	Quasiâ€Shellâ€Growth Strategy Achieves Stable and Efficient Green InP Quantum Dot Lightâ€Emitting Diodes. Advanced Science, 2022, 9, .	11.2	33
29	Electronic, mechanical and optical properties of Y2O3 with hybrid density functional (HSE06). Computational Materials Science, 2013, 71, 19-24.	3.0	32
30	Strain engineering and photocatalytic application of single-layer ReS2. International Journal of Hydrogen Energy, 2017, 42, 161-167.	7.1	30
31	Hydrogen storage in polylithiated BC3 monolayer sheet. Solid State Communications, 2013, 170, 39-43.	1.9	29
32	Strong shear softening induced by superionic hydrogen in Earth's inner core. Earth and Planetary Science Letters, 2021, 568, 117014.	4.4	29
33	Thermoelasticity of Fe ₇ C ₃ under inner core conditions. Journal of Geophysical Research: Solid Earth, 2016, 121, 5828-5837.	3.4	28
34	Effect of co-addition of RE, Fe and Mn on the microstructure and performance of A390 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 527, 146-149.	5.6	27
35	Ab Initio Molecular Dynamics Investigation of Molten Fe–Si–O in Earth's Core. Geophysical Research Letters, 2019, 46, 6397-6405.	4.0	27
36	Carbon Partitioning Between the Earth's Inner and Outer Core. Journal of Geophysical Research: Solid Earth, 2019, 124, 12812-12824.	3.4	23

#	Article	IF	Citations
37	Light-emitting field-effect transistors with EQE over 20% enabled by a dielectric-quantum dots-dielectric sandwich structure. Science Bulletin, 2022, 67, 529-536.	9.0	23
38	Influence of forming process on three-dimensional morphology of TiB2 particles in Al-Ti-B alloys. Transactions of Nonferrous Metals Society of China, 2012, 22, 564-570.	4.2	22
39	The improvement of microstructures and mechanical properties of near eutectic Al–Si multicomponent alloy by an Al–8Zr–2P master alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 531, 55-60.	5. 6	21
40	Bond Network Topology and Antiferroelectric Order in Cuprice CuOH. Inorganic Chemistry, 2015, 54, 8969-8977.	4.0	21
41	Tweaking the magnetism of MoS2 nanoribbon with hydrogen and carbon passivation. Nanotechnology, 2014, 25, 165703.	2.6	20
42	Dynamic stability of the single-layer transition metal dichalcogenides. Computational Materials Science, 2014, 92, 206-212.	3.0	19
43	Metal-decorated graphene oxide for ammonia adsorption. Europhysics Letters, 2013, 103, 28007.	2.0	17
44	The nature of hydrogen in \hat{l}^3 -alumina. Journal of Applied Physics, 2014, 115, .	2.5	15
45	Communication: Origin of the difference between carbon nanotube armchair and zigzag ends. Journal of Chemical Physics, 2014, 140, 091102.	3.0	13
46	Impurity effects on the grain boundary cohesion in copper. Physical Review Materials, 2017, 1, .	2.4	13
47	Structural diversity and electronic properties in potassium silicides. Journal of Chemical Physics, 2018, 148, 204706.	3.0	11
48	Superconductivity in the van der Waals layered compound PS2. Physical Review B, 2019, 99, .	3.2	11
49	Equation of State of hcp Feâ€Câ€Si Alloys and the Effect of C Incorporation Mechanism on the Density of hcp Fe Alloys at 300ÂK. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020159.	3.4	10
50	Electronic structure, mechanical and optical properties of In2O3 with hybrid density functional (HSEO6). Solid State Communications, 2013, 172, 37-40.	1.9	9
51	Interactions of point defects with stacking faults in oxygen-free phosphorus-containing copper. Journal of Nuclear Materials, 2015, 462, 160-164.	2.7	9
52	Gluing together metallic and covalent layers to form Ru ₂ C under ambient conditions. Physical Chemistry Chemical Physics, 2015, 17, 9730-9736.	2.8	9
53	Physical and chemical properties of Cu(<scp>i</scp>) compounds with O and/or H. Dalton Transactions, 2017, 46, 529-538.	3.3	9
54	Mg partitioning between solid and liquid iron under the Earth's core conditions. Physics of the Earth and Planetary Interiors, 2018, 274, 218-221.	1.9	8

#	Article	IF	CITATIONS
55	Dominant Polar Surfaces of Colloidal II–VI Wurtzite Semiconductor Nanocrystals Enabled by Cation Exchange. Journal of Physical Chemistry Letters, 2020, 11, 4990-4997.	4.6	8
56	Strain-induced stabilization of Al functionalization in graphene oxide nanosheet for enhanced NH3 storage. Applied Physics Letters, 2013, 102 , .	3.3	7
57	Spontaneous Formation of Heterodimer Au–Fe ₇ S ₈ Nanoplatelets by a Seeded Growth Approach. Journal of Physical Chemistry C, 2019, 123, 10604-10613.	3.1	7
58	Tuning of electronic and optical properties of a predicted silicon allotrope: Hexagonal silicon <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>h</mml:mi><mml:mn>10<td>nn≯?⁄mml</td><td>:mrow></td></mml:mn></mml:mrow></mml:math 	nn≯?⁄mml	:mrow>
59	Primitive noble gases sampled from ocean island basalts cannot be from the Earth's core. Nature Communications, 2022, 13, .	12.8	6
60	Zero-emission multivalorization of light alcohols with self-separable pure H2 fuel. Applied Catalysis B: Environmental, 2021, 292, 120212.	20.2	5
61	Pressure-Induced Structural Phase Transition and Superconductivity in NaSn5. Inorganic Chemistry, 2020, 59, 484-490.	4.0	4
62	Pressure-tuned one- to quasi-two-dimensional structural phase transition and superconductivity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">LiP</mml:mi><mml:mn>15</mml:mn></mml:msub></mml:math> . Physical Review B, 2022, 105, .	3.2	4
63	ElasT: A toolkit for thermoelastic calculations. Computer Physics Communications, 2022, 273, 108280.	7.5	3
64	The effect of water on the outer core transport properties. Physics of the Earth and Planetary Interiors, 2022, 329-330, 106907.	1.9	3
65	Pressure-induced structural phase transition in Li4Ge. CrystEngComm, 2018, 20, 5949-5954.	2.6	2
66	Electronic structures and optical properties of cuprous oxide and hydroxide. Materials Research Society Symposia Proceedings, 2014, 1675, 185-190.	0.1	1
67	Exploring configurational degrees of freedom in disordered solids. AIP Conference Proceedings, 2018,	0.4	0
68	Photocatalysis: Spontaneous Formation of Noble- and Heavy-Metal-Free Alloyed Semiconductor Quantum Rods for Efficient Photocatalysis (Adv. Mater. 39/2018). Advanced Materials, 2018, 30, 1870296.	21.0	0
69	Photocatalysts: Colloidal Singleâ€Layer Photocatalysts for Methanolâ€Storable Solar H ₂ Fuel (Adv. Mater. 49/2019). Advanced Materials, 2019, 31, 1970348.	21.0	0
70	Photocatalytic Hydrogen Production: Nonepitaxial Goldâ€Tipped ZnSe Hybrid Nanorods for Efficient Photocatalytic Hydrogen Production (Small 12/2020). Small, 2020, 16, 2070066.	10.0	0
71	Equation of state for CO and CO2 fluids and their application on decarbonation reactions at high pressure and temperature. Chemical Geology, 2021, 559, 119918.	3.3	0
72	Water Partitioning between Liquid Iron and Silicate Melt. , 2020, , .		0

YHNGHO LI

#	Article	IF	CITATIONS
73	Superionic iron-hydrogen alloys in Earth's inner core. , 2021, , .		0
74	Nitrogen Speciation in Silicate Melts at Mantle Conditions From Ab Initio Simulations. Geophysical Research Letters, 2022, 49, .	4.0	0