Jamie M Caldwell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5373050/publications.pdf

Version: 2024-02-01

471509 552781 1,375 27 17 26 citations h-index g-index papers 32 32 32 1798 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The influence of vectorâ€borne disease on human history: socioâ€ecological mechanisms. Ecology Letters, 2021, 24, 829-846.	6.4	28
2	Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents. Nature Communications, 2021, 12, 1233.	12.8	49
3	Impact of recent climate extremes on mosquito-borne disease transmission in Kenya. PLoS Neglected Tropical Diseases, 2021, 15, e0009182.	3.0	34
4	Coral reef resilience differs among islands within the Gulf of Mannar, southeast India, following successive coral bleaching events. Coral Reefs, 2021, 40, 1029-1044.	2.2	9
5	How will mosquitoes adapt to climate warming?. ELife, 2021, 10, .	6.0	46
6	Understanding COVID-19 dynamics and the effects of interventions in the Philippines: A mathematical modelling study. The Lancet Regional Health - Western Pacific, 2021, 14, 100211.	2.9	25
7	Vaccines and variants: Modelling insights into emerging issues in COVID-19 epidemiology. Paediatric Respiratory Reviews, 2021, 39, 32-39.	1.8	18
8	Sustaining effective COVID-19 control in Malaysia through large-scale vaccination. Epidemics, 2021, 37, 100517.	3.0	8
9	Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planetary Health, The, 2020, 4, e416-e423.	11.4	163
10	Coral Disease Time Series Highlight Size-Dependent Risk and Other Drivers of White Syndrome in a Multi-Species Model. Frontiers in Marine Science, 2020, 7, .	2.5	15
11	Complementary sampling methods for coral histology, metabolomics and microbiome. Methods in Ecology and Evolution, 2020, 11, 1012-1020.	5. 2	11
12	Modelling insights into the COVID-19 pandemic. Paediatric Respiratory Reviews, 2020, 35, 64-69.	1.8	35
13	Role of modelling in COVID-19 policy development. Paediatric Respiratory Reviews, 2020, 35, 57-60.	1.8	59
14	Case-control design identifies ecological drivers of endemic coral diseases. Scientific Reports, 2020, 10, 2831.	3.3	22
15	Localized outbreaks of coral disease on Arabian reefs are linked to extreme temperatures and environmental stressors. Coral Reefs, 2020, 39, 829-846.	2,2	30
16	Environmental Drivers of Vector-Borne Diseases. , 2020, , 85-118.		10
17	Thermal biology of mosquitoâ€borne disease. Ecology Letters, 2019, 22, 1690-1708.	6.4	349
18	Climate drives spatial variation in Zika epidemics in Latin America. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191578.	2.6	20

#	Article	IF	CITATIONS
19	Disease epidemic and a marine heat wave are associated with the continental-scale collapse of a pivotal predator (<i>Pycnopodia helianthoides</i>). Science Advances, 2019, 5, eaau7042.	10.3	142
20	Malaria smear positivity among Kenyan children peaks at intermediate temperatures as predicted by ecological models. Parasites and Vectors, 2019, 12, 288.	2.5	28
21	Modes of coral disease transmission: how do diseases spread between individuals and among populations?. Marine Biology, 2019, 166, 1.	1.5	33
22	Host size and proximity to diseased neighbours drive the spread of a coral disease outbreak in Hawaiâ€i. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172265.	2.6	30
23	Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission. PLoS Neglected Tropical Diseases, 2018, 12, e0006451.	3.0	98
24	Intra-colony disease progression induces fragmentation of coral fluorescent pigments. Scientific Reports, 2017, 7, 14596.	3.3	7
25	Satellite SST-Based Coral Disease Outbreak Predictions for the Hawaiian Archipelago. Remote Sensing, 2016, 8, 93.	4.0	18
26	Hawaiʻi Coral Disease database (HICORDIS): species-specific coral health data from across the Hawaiian archipelago. Data in Brief, 2016, 8, 1054-1058.	1.0	9
27	Suitable Days for Plant Growth Disappear under Projected Climate Change: Potential Human and Biotic Vulnerability. PLoS Biology, 2015, 13, e1002167.	5.6	73