Hoang Nguyen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/537302/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flood Detection and Susceptibility Mapping Using Sentinel-1 Remote Sensing Data and a Machine Learning Approach: Hybrid Intelligence of Bagging Ensemble Based on K-Nearest Neighbor Classifier. Remote Sensing, 2020, 12, 266.	1.8	210
2	A Comparative Study of PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in Estimating the Heating Load of Buildings' Energy Efficiency for Smart City Planning. Applied Sciences (Switzerland), 2019, 9, 2630.	1.3	205
3	Improving prediction of water quality indices using novel hybrid machine-learning algorithms. Science of the Total Environment, 2020, 721, 137612.	3.9	202
4	Application of a Hybrid Artificial Neural Network-Particle Swarm Optimization (ANN-PSO) Model in Behavior Prediction of Channel Shear Connectors Embedded in Normal and High-Strength Concrete. Applied Sciences (Switzerland), 2019, 9, 5534.	1.3	197
5	Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate. Engineering Applications of Artificial Intelligence, 2021, 97, 104015.	4.3	195
6	A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model. Engineering With Computers, 2021, 37, 3329-3346.	3.5	176
7	Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning. Science of the Total Environment, 2020, 720, 137320.	3.9	157
8	Predicting Blast-Induced Air Overpressure: A Robust Artificial Intelligence System Based on Artificial Neural Networks and Random Forest. Natural Resources Research, 2019, 28, 893-907.	2.2	155
9	Prediction of Blast-Induced Ground Vibration in an Open-Pit Mine by a Novel Hybrid Model Based on Clustering and Artificial Neural Network. Natural Resources Research, 2020, 29, 691-709.	2.2	148
10	Applications of rice husk ash as green and sustainable biomass. Journal of Cleaner Production, 2019, 237, 117851.	4.6	141
11	Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area. Ecological Indicators, 2021, 129, 107869.	2.6	130
12	Novel Soft Computing Model for Predicting Blast-Induced Ground Vibration in Open-Pit Mines Based on Particle Swarm Optimization and XGBoost. Natural Resources Research, 2020, 29, 711-721.	2.2	116
13	A new soft computing model for estimating and controlling blast-produced ground vibration based on Hierarchical K-means clustering and Cubist algorithms. Applied Soft Computing Journal, 2019, 77, 376-386.	4.1	115
14	A novel Harris hawks' optimization and k-fold cross-validation predicting slope stability. Engineering With Computers, 2021, 37, 369-379.	3.5	113
15	Harris Hawks Optimization: A Novel Swarm Intelligence Technique for Spatial Assessment of Landslide Susceptibility. Sensors, 2019, 19, 3590.	2.1	111
16	Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: a case study. Acta Geophysica, 2019, 67, 477-490.	1.0	107
17	A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine, Vietnam. Neural Computing and Applications, 2020, 32, 3939-3955.	3.2	107
18	Optimizing ANN models with PSO for predicting short building seismic response. Engineering With Computers, 2020, 36, 823-837.	3.5	107

#	Article	IF	CITATIONS
19	Prediction of Blast-induced Air Over-pressure in Open-Pit Mine: Assessment of Different Artificial Intelligence Techniques. Natural Resources Research, 2020, 29, 571-591.	2.2	102
20	Potential of hybrid evolutionary approaches for assessment of geo-hazard landslide susceptibility mapping. Geomatics, Natural Hazards and Risk, 2019, 10, 1667-1693.	2.0	89
21	A Novel Artificial Intelligence Approach to Predict Blast-Induced Ground Vibration in Open-Pit Mines Based on the Firefly Algorithm and Artificial Neural Network. Natural Resources Research, 2020, 29, 723-737.	2.2	89
22	Estimating the Heating Load of Buildings for Smart City Planning Using a Novel Artificial Intelligence Technique PSO-XGBoost. Applied Sciences (Switzerland), 2019, 9, 2714.	1.3	87
23	Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment. International Journal of Environmental Research and Public Health, 2020, 17, 4933.	1.2	84
24	Prediction of slope failure in open-pit mines using a novel hybrid artificial intelligence model based on decision tree and evolution algorithm. Scientific Reports, 2020, 10, 9939.	1.6	77
25	Novel hybrids of adaptive neuro-fuzzy inference system (ANFIS) with several metaheuristic algorithms for spatial susceptibility assessment of seismic-induced landslide. Geomatics, Natural Hazards and Risk, 2019, 10, 1879-1911.	2.0	75
26	Comprehensive preference learning and feature validity for designing energy-efficient residential buildings using machine learning paradigms. Applied Soft Computing Journal, 2019, 84, 105748.	4.1	73
27	Computational Intelligence Model for Estimating Intensity of Blast-Induced Ground Vibration in a Mine Based on Imperialist Competitive and Extreme Gradient Boosting Algorithms. Natural Resources Research, 2020, 29, 751-769.	2.2	72
28	A Novel Combination of Whale Optimization Algorithm and Support Vector Machine with Different Kernel Functions for Prediction of Blasting-Induced Fly-Rock in Quarry Mines. Natural Resources Research, 2021, 30, 191-207.	2.2	69
29	Prediction of ultimate bearing capacity through various novel evolutionary and neural network models. Engineering With Computers, 2020, 36, 671-687.	3.5	65
30	Optimizing an ANN model with genetic algorithm (GA) predicting load-settlement behaviours of eco-friendly raft-pile foundation (ERP) system. Engineering With Computers, 2020, 36, 421-433.	3.5	62
31	Predicting Blast-Induced Ground Vibration in Open-Pit Mines Using Vibration Sensors and Support Vector Regression-Based Optimization Algorithms. Sensors, 2020, 20, 132.	2.1	62
32	Soft computing-based models for the prediction of masonry compressive strength. Engineering Structures, 2021, 248, 113276.	2.6	61
33	A particle-based optimization of artificial neural network for earthquake-induced landslide assessment in Ludian county, China. Geomatics, Natural Hazards and Risk, 2019, 10, 1750-1771.	2.0	60
34	Comparison of dragonfly algorithm and Harris hawks optimization evolutionary data mining techniques for the assessment of bearing capacity of footings over two-layer foundation soils. Engineering With Computers, 2021, 37, 437-447.	3.5	60
35	Nonlinear evolutionary swarm intelligence of grasshopper optimization algorithm and gray wolf optimization for weight adjustment of neural network. Engineering With Computers, 2021, 37, 1265-1275.	3.5	59
36	Agricultural wastes preparation, management, and applications in civil engineering: a review. Journal of Material Cycles and Waste Management, 2019, 21, 1039-1051.	1.6	58

#	Article	IF	CITATIONS
37	Enhancing nitrate and strontium concentration prediction in groundwater by using new data mining algorithm. Science of the Total Environment, 2020, 715, 136836.	3.9	58
38	Predicting roof displacement of roadways in underground coal mines using adaptive neuro-fuzzy inference system optimized by various physics-based optimization algorithms. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13, 1452-1465.	3.7	58
39	Developing a novel artificial intelligence model to estimate the capital cost of mining projects using deep neural network-based ant colony optimization algorithm. Resources Policy, 2020, 66, 101604.	4.2	58
40	Landslide Detection and Susceptibility Modeling on Cameron Highlands (Malaysia): A Comparison between Random Forest, Logistic Regression and Logistic Model Tree Algorithms. Forests, 2020, 11, 830.	0.9	57
41	Adaptive Network Based Fuzzy Inference System with Meta-Heuristic Optimizations for International Roughness Index Prediction. Applied Sciences (Switzerland), 2019, 9, 4715.	1.3	55
42	Evaluating and predicting blast-induced ground vibration in open-cast mine using ANN: a case study in Vietnam. SN Applied Sciences, 2019, 1, 1.	1.5	54
43	Neuro-genetic, neuro-imperialism and genetic programing models in predicting ultimate bearing capacity of pile. Engineering With Computers, 2020, 36, 1101-1115.	3.5	53
44	Evaluating and Predicting the Stability of Roadways in Tunnelling and Underground Space Using Artificial Neural Network-Based Particle Swarm Optimization. Tunnelling and Underground Space Technology, 2020, 103, 103517.	3.0	51
45	A new technique to predict fly-rock in bench blasting based on an ensemble of support vector regression and GLMNET. Engineering With Computers, 2021, 37, 421-435.	3.5	51
46	Comparison of Support Vector Machine, Bayesian Logistic Regression, and Alternating Decision Tree Algorithms for Shallow Landslide Susceptibility Mapping along a Mountainous Road in the West of Iran. Applied Sciences (Switzerland), 2020, 10, 5047.	1.3	50
47	Mapping of Groundwater Spring Potential in Karst Aquifer System Using Novel Ensemble Bivariate and Multivariate Models. Water (Switzerland), 2020, 12, 985.	1.2	50
48	Predicting the sorption efficiency of heavy metal based on the biochar characteristics, metal sources, and environmental conditions using various novel hybrid machine learning models. Chemosphere, 2021, 276, 130204.	4.2	49
49	A Novel Hybrid Model for Predicting Blast-Induced Ground Vibration Based on k-Nearest Neighbors and Particle Swarm Optimization. Scientific Reports, 2019, 9, 13971.	1.6	48
50	Predicting rock size distribution in mine blasting using various novel soft computing models based on meta-heuristics and machine learning algorithms. Geoscience Frontiers, 2021, 12, 101108.	4.3	48
51	A Novel Hunger Games Search Optimization-Based Artificial Neural Network for Predicting Ground Vibration Intensity Induced by Mine Blasting. Natural Resources Research, 2021, 30, 3865-3880.	2.2	48
52	Development of Hybrid Artificial Intelligence Approaches and a Support Vector Machine Algorithm for Predicting the Marshall Parameters of Stone Matrix Asphalt. Applied Sciences (Switzerland), 2019, 9, 3172.	1.3	46
53	A comparison of advanced computational models and experimental techniques in predicting blast-induced ground vibration in open-pit coal mine. Acta Geophysica, 2019, 67, 1025-1037.	1.0	45
54	A novel artificial intelligence technique for analyzing slope stability using PSO-CA model. Engineering With Computers, 2021, 37, 533-544.	3.5	44

#	Article	IF	CITATIONS
55	Support vector regression approach with different kernel functions for predicting blast-induced ground vibration: a case study in an open-pit coal mine of Vietnam. SN Applied Sciences, 2019, 1, 1.	1.5	43
56	Fine-tuning of neural computing using whale optimization algorithm for predicting compressive strength of concrete. Engineering With Computers, 2021, 37, 701-712.	3.5	43
57	Daily Water Level Prediction of Zrebar Lake (Iran): A Comparison between M5P, Random Forest, Random Tree and Reduced Error Pruning Trees Algorithms. ISPRS International Journal of Geo-Information, 2020, 9, 479.	1.4	42
58	Optimizing Levenberg–Marquardt backpropagation technique in predicting factor of safety of slopes after two-dimensional OptumG2 analysis. Engineering With Computers, 2020, 36, 941-952.	3.5	39
59	Prediction of Blast-Induced Ground Vibration in Open-Pit Mines Using a New Technique Based on Imperialist Competitive Algorithm and M5Rules. Natural Resources Research, 2020, 29, 791-806.	2.2	39
60	Prediction of flyrock distance induced by mine blasting using a novel Harris Hawks optimization-based multi-layer perceptron neural network. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13, 1413-1427.	3.7	39
61	Monitoring and Assessment of Water Level Fluctuations of the Lake Urmia and Its Environmental Consequences Using Multitemporal Landsat 7 ETM+ Images. International Journal of Environmental Research and Public Health, 2020, 17, 4210.	1.2	37
62	Forecasting mining capital cost for open-pit mining projects based on artificial neural network approach. Resources Policy, 2021, 74, 101474.	4.2	36
63	Estimating PM10 Concentration from Drilling Operations in Open-Pit Mines Using an Assembly of SVR and PSO. Applied Sciences (Switzerland), 2019, 9, 2806.	1.3	35
64	Feasibility of a novel predictive technique based on artificial neural network optimized with particle swarm optimization estimating pullout bearing capacity of helical piles. Engineering With Computers, 2020, 36, 1315-1324.	3.5	35
65	Soft computing models for predicting blast-induced air over-pressure: A novel artificial intelligence approach. Applied Soft Computing Journal, 2020, 92, 106292.	4.1	35
66	Predicting blast-induced peak particle velocity using BGAMs, ANN and SVM: a case study at the Nui Beo open-pit coal mine in Vietnam. Environmental Earth Sciences, 2019, 78, 1.	1.3	34
67	Prediction of the sorption efficiency of heavy metal onto biochar using a robust combination of fuzzy C-means clustering and back-propagation neural network. Journal of Environmental Management, 2021, 293, 112808.	3.8	33
68	Proposing a novel predictive technique using M5Rules-PSO model estimating cooling load in energy-efficient building system. Engineering With Computers, 2020, 36, 857-866.	3.5	30
69	Optimized functional linked neural network for predicting diaphragm wall deflection induced by braced excavations in clays. Geoscience Frontiers, 2022, 13, 101313.	4.3	30
70	Toward a State-of-the-Art of Fly-Rock Prediction Technology in Open-Pit Mines Using EANNs Model. Applied Sciences (Switzerland), 2019, 9, 4554.	1.3	29
71	A refreshing view of soft computing models for predicting the deflection of reinforced concrete beams. Applied Soft Computing Journal, 2020, 97, 106831.	4.1	29
72	A generalized artificial intelligence model for estimating the friction angle of clays in evaluating slope stability using a deep neural network and Harris Hawks optimization algorithm. Engineering With Computers, 2022, 38, 3901-3914.	3.5	29

#	Article	IF	CITATIONS
73	Prediction of Blast-Induced Ground Vibration Intensity in Open-Pit Mines Using Unmanned Aerial Vehicle and a Novel Intelligence System. Natural Resources Research, 2020, 29, 771-790.	2.2	28
74	Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms. Resources Policy, 2021, 73, 102195.	4.2	28
75	A comparative study of empirical and ensemble machine learning algorithms in predicting air over-pressure in open-pit coal mine. Acta Geophysica, 2020, 68, 325-336.	1.0	28
76	Analysis and prediction of diaphragm wall deflection induced by deep braced excavations using finite element method and artificial neural network optimized by metaheuristic algorithms. Reliability Engineering and System Safety, 2022, 221, 108335.	5.1	28
77	A Novel Artificial Intelligence Technique to Estimate the Gross Calorific Value of Coal Based on Meta-Heuristic and Support Vector Regression Algorithms. Applied Sciences (Switzerland), 2019, 9, 4868.	1.3	27
78	Predicting Ground Vibrations Due to Mine Blasting Using a Novel Artificial Neural Network-Based Cuckoo Search Optimization. Natural Resources Research, 2021, 30, 2663-2685.	2.2	26
79	Modeling of rock fragmentation by firefly optimization algorithm and boosted generalized additive model. Neural Computing and Applications, 2021, 33, 3503-3519.	3.2	25
80	Improved Levenberg–Marquardt backpropagation neural network by particle swarm and whale optimization algorithms to predict the deflection of RC beams. Engineering With Computers, 2022, 38, 3847-3869.	3.5	25
81	Prediction of Rock Size Distribution in Mine Bench Blasting Using a Novel Ant Colony Optimization-Based Boosted Regression Tree Technique. Natural Resources Research, 2020, 29, 867-886.	2.2	24
82	Flash-flood potential index estimation using fuzzy logic combined with deep learning neural network, naìve Bayes, XGBoost and classification and regression tree. Geocarto International, 2022, 37, 6780-6807.	1.7	22
83	Rapid Determination of Gross Calorific Value of Coal Using Artificial Neural Network and Particle Swarm Optimization. Natural Resources Research, 2021, 30, 621-638.	2.2	21
84	Prediction of gas yield generated by energy recovery from municipal solid waste using deep neural network and moth-flame optimization algorithm. Journal of Cleaner Production, 2021, 311, 127672.	4.6	21
85	A Comparative Study of Different Machine Learning Algorithms in Predicting the Content of Ilmenite in Titanium Placer. Applied Sciences (Switzerland), 2020, 10, 635.	1.3	21
86	Estimation of Ground Vibration Intensity Induced by Mine Blasting using a State-of-the-Art Hybrid Autoencoder Neural Network andÂSupport Vector Regression Model. Natural Resources Research, 2021, 30, 3853-3864.	2.2	20
87	Forecasting monthly copper price: A comparative study of various machine learning-based methods. Resources Policy, 2021, 73, 102189.	4.2	20
88	Estimation of Blast-Induced Air Overpressure in Quarry Mines Using Cubist-Based Genetic Algorithm. Natural Resources Research, 2020, 29, 593-607.	2.2	19
89	A novel artificial intelligent model for predicting water treatment efficiency of various biochar systems based on artificial neural network and queuing search algorithm. Chemosphere, 2022, 287, 132251.	4.2	19
90	Flash-flood propagation susceptibility estimation using weights of evidence and their novel ensembles with multicriteria decision making and machine learning. Geocarto International, 2022, 37, 8361-8393.	1.7	19

#	Article	IF	CITATIONS
91	Flood Susceptibility Modeling in a Subtropical Humid Low-Relief Alluvial Plain Environment: Application of Novel Ensemble Machine Learning Approach. Frontiers in Earth Science, 2021, 9, .	0.8	19
92	Composition and Morphology Characteristics of Magnetic Fractions of Coal Fly Ash Wastes Processed in High-Temperature Exposure in Thermal Power Plants. Applied Sciences (Switzerland), 2019, 9, 1964.	1.3	17
93	Proposing two new metaheuristic algorithms of ALO-MLP and SHO-MLP inÂpredicting bearing capacity of circular footing located on horizontal multilayer soil. Engineering With Computers, 2021, 37, 1537-1547.	3.5	17
94	Prediction of Pullout Behavior of Belled Piles through Various Machine Learning Modelling Techniques. Sensors, 2019, 19, 3678.	2.1	16
95	Two novel neural-evolutionary predictive techniques of dragonfly algorithm (DA) and biogeography-based optimization (BBO) for landslide susceptibility analysis. Geomatics, Natural Hazards and Risk, 2019, 10, 2429-2453.	2.0	16
96	Novel Extreme Learning Machine-Multi-Verse Optimization Model for Predicting Peak Particle Velocity Induced by Mine Blasting. Natural Resources Research, 2021, 30, 4735-4751.	2.2	16
97	A novel approach in adsorption of heavy metal ions from aqueous solution using synthesized MCM-41 from coal bottom ash. International Journal of Environmental Analytical Chemistry, 2020, 100, 1226-1244.	1.8	15
98	Predicting Blast-Induced Ground Vibration in Open-Pit Mines Using Different Nature-Inspired Optimization Algorithms and Deep Neural Network. Natural Resources Research, 2021, 30, 4695-4717.	2.2	15
99	Novel integrated approaches for predicting the compressibility of clay using cascade forward neural networks optimized by swarm- and evolution-based algorithms. Acta Geotechnica, 2022, 17, 1257-1272.	2.9	15
100	Performance evaluation of nanotubular halloysites from weathered pegmatites in removing heavy metals from water through novel artificial intelligence-based models and human-based optimization algorithm. Chemosphere, 2021, 282, 131012.	4.2	15
101	Predicting rock displacement in underground mines using improved machine learning-based models. Measurement: Journal of the International Measurement Confederation, 2022, 188, 110552.	2.5	15
102	Toward state-of-the-art techniques in predicting and controlling slope stability in open-pit mines based on limit equilibrium analysis, radial basis function neural network, and brainstorm optimization. Acta Geotechnica, 2022, 17, 1295-1314.	2.9	14
103	Estimating Ore Production in Open-pit Mines Using Various Machine Learning Algorithms Based on a Truck-Haulage System and Support of Internet of Things. Natural Resources Research, 2021, 30, 1141-1173.	2.2	13
104	Prediction of ground vibration intensity in mine blasting using the novel hybrid MARS–PSO–MLP model. Engineering With Computers, 2022, 38, 4007-4025.	3.5	12
105	Detection of areas prone to flood-induced landslides risk using certainty factor and its hybridization with FAHP, XGBoost and deep learning neural network. Geocarto International, 2022, 37, 7303-7338.	1.7	12
106	Predicting Blast-induced Ground Vibration in Quarries Using Adaptive Fuzzy Inference Neural Network and Moth–Flame Optimization. Natural Resources Research, 2021, 30, 4719-4734.	2.2	12
107	Diagnosis of Problems in Truck Ore Transport Operations in Underground Mines Using Various Machine Learning Models and Data Collected by Internet of Things Systems. Minerals (Basel,) Tj ETQq1 1 0.78	4314or.gBT /	Ov en lock 10
108	Estimating Air Over-pressure Resulting from Blasting in Quarries Based on a Novel Ensemble Model (GLMNETs–MLPNN). Natural Resources Research, 2021, 30, 2629-2646.	2.2	10

#	Article	IF	CITATIONS
109	Optimization of haulage-truck system performance for ore production in open-pit mines using big data and machine learning-based methods. Resources Policy, 2022, 75, 102522.	4.2	10
110	Novel metaheuristic classification approach in developing mathematical model-based solutions predicting failure in shallow footing. Engineering With Computers, 2021, 37, 223-230.	3.5	9
111	Soft computing method for predicting pressure drop reduction in crude oil pipelines based on machine learning methods. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	0.8	8
112	Estimating heavy metals absorption efficiency in an aqueous solution using nanotube-type halloysite from weathered pegmatites and a novel Harris hawks optimization-based multiple layers perceptron neural network. Engineering With Computers, 2022, 38, 4257-4272.	3.5	8
113	Exploring the relation between production factors, ore grades, and life of mine for forecasting mining capital cost through a novel cascade forward neural network-based salp swarm optimization model. Resources Policy, 2021, 74, 102300.	4.2	8
114	A novel soft computing model for predicting blast - induced ground vibration in open - pit mines using gene expression programming. Journal of Mining and Earth Sciences, 2020, 61, 107-116.	0.0	8
115	Application of the k - nearest neighbors algorithm for predicting blast - induced ground vibration in open - pit coal mines: a case study. Journal of Mining and Earth Sciences, 2020, 61, 22-29.	0.0	7
116	Conductivity of composites with multiple polygonal aggregates, theoretical estimates and numerical solutions from polarization series. International Journal of Engineering Science, 2018, 123, 109-116.	2.7	5
117	Determination of Young Elasticity Modulus in Bored Piles Through the Clobal Strain Extensometer Sensors and Real-Time Monitoring Data. Applied Sciences (Switzerland), 2019, 9, 3060.	1.3	5
118	A Review of Artificial Intelligence Applications in Mining and Geological Engineering. Lecture Notes in Civil Engineering, 2021, , 109-142.	0.3	4
119	Use of Unmanned Aerial Vehicles for 3D topographic Mapping and Monitoring the Air Quality of Open-pit Mines. Inzynieria Mineralna, 2022, 2, .	0.2	3
120	A Lasso and Elastic-Net Regularized Generalized Linear Model for Predicting Blast-Induced Air Over-pressure in Open-Pit Mines. Inzynieria Mineralna, 2022, 2, .	0.2	3
121	Extra Trees Ensemble: A Machine Learning Model for Predicting Blast-Induced Ground Vibration Based on the Bagging and Sibling of Random Forest Algorithm. Lecture Notes in Civil Engineering, 2022, , 643-652.	0.3	3
122	Utilizing a Novel Artificial Neural Network-Based Meta-heuristic Algorithm to Predict the Dust Concentration in Deo Nai Open-Pit Coal Mine (Vietnam). Lecture Notes in Civil Engineering, 2021, , 203-223.	0.3	1
123	Research on Suitable Mining Technology for Placer Titanium Mines in Vietnam. Inzynieria Mineralna, 2021, 1, .	0.2	1
124	Developing an Advanced Soft Computational Model for Estimating Blast-Induced Ground Vibration in Nui Beo Open-pit Coal Mine (Vietnam) Using Artificial Neural Network. Inzynieria Mineralna, 2022, 2, .	0.2	1
125	Evaluating the Air Flow and Gas Dispersion Behavior in a Deep Open-Pit Mine Based on Monitoring and CFD Analysis: A Case Study at the Coc Sau Open-Pit Coal Mine (Vietnam). Lecture Notes in Civil Engineering, 2021, , 224-244.	0.3	0
126	Evaluating the Effect of Meteorological Conditions on Blast-Induced Air Over-Pressure in Open Pit Coal Mines. Lecture Notes in Civil Engineering, 2021, , 170-186.	0.3	0

#	Article	IF	CITATIONS
127	Development of a Blasting Vibration Monitoring System Based on Tri-axial Acceleration Sensor for Wireless Mesh Network Monitoring. Lecture Notes in Civil Engineering, 2021, , 187-202.	0.3	0