Feifei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5372554/publications.pdf

Version: 2024-02-01

623734 677142 29 513 14 22 citations h-index g-index papers 29 29 29 432 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Phytoremediation of soil heavy metals (Cd and Zn) by castor seedlings: Tolerance, accumulation and subcellular distribution. Chemosphere, 2020, 252, 126471.	8.2	54
2	Using UV/H2O2 pre-oxidation combined with an optimised disinfection scenario to control CX3R-type disinfection by-product formation. Water Research, 2019, 167, 115096.	11.3	44
3	Effect of residual H2O2 from advanced oxidation processes on subsequent biological water treatment: A laboratory batch study. Chemosphere, 2017, 185, 637-646.	8.2	39
4	Integrated control of CX3R-type DBP formation by coupling thermally activated persulfate pre-oxidation and chloramination. Water Research, 2019, 160, 304-312.	11.3	38
5	Microbial degradation of typical amino acids and its impact on the formation of trihalomethanes, haloacetonitriles and haloacetamides during chlor(am)ination. Water Research, 2019, 159, 55-64.	11.3	35
6	Sulfonamides removal under different redox conditions and microbial response to sulfonamides stress during riverbank filtration: A laboratory column study. Chemosphere, 2019, 220, 668-677.	8.2	33
7	The contribution of atmospheric particulate matter to the formation of CX3R-type disinfection by-products in rainwater during chlorination. Water Research, 2018, 145, 531-540.	11.3	31
8	Characterization of dissolved organic matter derived from atmospheric dry deposition and its DBP formation. Water Research, 2020, 171, 115368.	11.3	31
9	Rapid degradation of brominated and iodinated haloacetamides with sulfite in drinking water: Degradation kinetics and mechanisms. Water Research, 2018, 143, 325-333.	11.3	27
10	Removal of CX3R-type disinfection by-product precursors from rainwater with conventional drinking water treatment processes. Water Research, 2020, 185, 116099.	11.3	25
11	Effective removal of bromate in nitrate-reducing anoxic zones during managed aquifer recharge for drinking water treatment: Laboratory-scale simulations. Water Research, 2018, 130, 88-97.	11.3	22
12	Weak magnetic field accelerates chloroacetamide removal by zero-valent iron in drinking water. Chemical Engineering Journal, 2019, 358, 40-47.	12.7	16
13	Removal of trihalomethanes and haloacetamides from drinking water during tea brewing: Removal mechanism and kinetic analysis. Water Research, 2020, 184, 116148.	11.3	16
14	Effect of oxidation ditch and anaerobic-anoxic-oxic processes on CX3R-type disinfection by-product formation during wastewater treatment. Science of the Total Environment, 2021, 770, 145344.	8.0	15
15	Interference from haloacetamides during the determination of haloacetic acids using gas chromatography. Journal of Chromatography A, 2020, 1612, 460652.	3.7	14
16	Spartina alterniflora raised soil sulfide content by regulating sulfur cycle-associated bacteria in the Jiuduansha Wetland of China. Plant and Soil, 2021, 469, 107-121.	3.7	10
17	Occurrence of CX ₃ R-Type Disinfection Byproducts in Drinking Water Treatment Plants Using DON-Rich Source Water. ACS ES&T Water, 2021, 1, 553-561.	4.6	9
18	Effects of biological activated carbon filter running time on disinfection by-product precursor removal. Science of the Total Environment, 2022, 838, 155936.	8.0	9

#	Article	IF	CITATION
19	Spartina alterniflora Invaded Coastal Wetlands by Raising Soil Sulfur Contents: A Meta-Analysis. Water (Switzerland), 2022, 14, 1633.	2.7	7
20	Cd(II) adsorption from aqueous solutions using modified attapulgite. Research on Chemical Intermediates, 2020, 46, 4897-4908.	2.7	6
21	Filamentous green algae Spirogyra regulates methane emissions from eutrophic rivers. Environmental Science and Pollution Research, 2021, 28, 3660-3671.	5. 3	6
22	Removal of Hydrogen Peroxide Residuals and By-Product Bromate from Advanced Oxidation Processes by Granular Activated Carbon. Water (Switzerland), 2021, 13, 2460.	2.7	6
23	Bromate Reduction by Iron(II) during Managed Aquifer Recharge: A Laboratory-Scale Study. Water (Switzerland), 2018, 10, 370.	2.7	5
24	Emerging investigator series: formation of brominated haloacetamides from trihalomethanes during zero-valent iron reduction and subsequent booster chlorination in drinking water distribution. Environmental Science: Water Research and Technology, 2020, 6, 1244-1255.	2.4	4
25	Phenol degradation in waters with high iodide level by layered double hydroxide-peroxodisulfate: Pathways and products. Journal of Environmental Sciences, 2022, 116, 14-24.	6.1	4
26	Efficient degradation of Congo red and phenol by a new photocatalyst Ag/AgBr-Al-attapulgite composite under visible light irradiation. Environmental Science and Pollution Research, 2021, 28, 33320-33330.	5. 3	2
27	Adsorption of humic acid fractions by a magnetic ion exchange resin. Water Science and Technology, 2022, 85, 2129-2144.	2.5	2
28	Application of Functional Modification of Iron-Based Materials in Advanced Oxidation Processes (AOPs). Water (Switzerland), 2022, 14, 1498.	2.7	2
29	Influence of atmospheric deposition on surface water quality and DBP formation potential as well as control technology of rainwater DBPs: a review. Environmental Science: Water Research and	2.4	1