Robert Musiol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5372482/publications.pdf

Version: 2024-02-01

75 papers 2,255 citations

201385 27 h-index 243296 44 g-index

78 all docs 78 docs citations

times ranked

78

2673 citing authors

#	Article	IF	CITATIONS
1	Antifungal properties of new series of quinoline derivatives. Bioorganic and Medicinal Chemistry, 2006, 14, 3592-3598.	1.4	249
2	An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opinion on Drug Discovery, 2017, 12, 583-597.	2.5	164
3	Investigating biological activity spectrum for novel quinoline analogues. Bioorganic and Medicinal Chemistry, 2007, 15, 1280-1288.	1.4	114
4	Investigating Biological Activity Spectrum for Novel Styrylquinazoline Analogues. Molecules, 2009, 14, 4246-4265.	1.7	67
5	Contribution to investigation of antimicrobial activity of styrylquinolines. Bioorganic and Medicinal Chemistry, 2012, 20, 6960-6968.	1.4	61
6	Synthesis and characterization of quinoline-based thiosemicarbazones and correlation of cellular iron-binding efficacy to anti-tumor efficacy. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5527-5531.	1.0	61
7	Anticancer activity of the thiosemicarbazones that are based on di-2-pyridine ketone and quinoline moiety. European Journal of Medicinal Chemistry, 2019, 171, 180-194.	2.6	61
8	Exploring the Anti-Cancer Activity of Novel Thiosemicarbazones Generated through the Combination of Retro-Fragments: Dissection of Critical Structure-Activity Relationships. PLoS ONE, 2014, 9, e110291.	1,1	61
9	Investigating biological activity spectrum for novel quinoline analogues 2: Hydroxyquinolinecarboxamides with photosynthesis-inhibiting activity. Bioorganic and Medicinal Chemistry, 2008, 16, 4490-4499.	1.4	53
10	Ring-substituted 4-Hydroxy-1H-quinolin-2-ones: Preparation and Biological Activity. Molecules, 2009, 14, 1145-1159.	1.7	49
11	The synthesis and anticancer activity of 2-styrylquinoline derivatives. A p53 independent mechanism of action. European Journal of Medicinal Chemistry, 2019, 177, 338-349.	2.6	46
12	The role of oxidative stress in activity of anticancer thiosemicarbazones. Oncotarget, 2018, 9, 17689-17710.	0.8	45
13	Investigating the Activity Spectrum for Ring-Substituted 8-Hydroxyquinolines. Molecules, 2010, 15, 288-304.	1.7	44
14	Investigating the anti-proliferative activity of styrylazanaphthalenes and azanaphthalenediones. Bioorganic and Medicinal Chemistry, 2010, 18, 2664-2671.	1.4	44
15	Pyrrolidinium-Based Ionic Liquids as Sustainable Media in Heat-Transfer Processes. ACS Sustainable Chemistry and Engineering, 2017, 5, 11024-11033.	3.2	44
16	Design, Synthesis and In Vitro Activity of Anticancer Styrylquinolines. The p53 Independent Mechanism of Action. PLoS ONE, 2015, 10, e0142678.	1.1	44
17	Quinoline-based HIV Integrase Inhibitors. Current Pharmaceutical Design, 2013, 19, 1835-1849.	0.9	44
18	Anticancer activity of 4′-phenyl-2,2′:6′,2″-terpyridines – behind the metal complexation. European Joof Medicinal Chemistry, 2020, 189, 112039.	ournal 2.6	38

#	Article	IF	CITATIONS
19	An Efficient Microwave-Assisted Synthesis of Structurally Diverse Styrylquinolines. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2006, 137, 1211-1217.	0.9	37
20	Synthesis of 8-hydroxyquinoline glycoconjugates and preliminary assay of their \hat{l}^2 1,4-GalT inhibitory and anti-cancer properties. Bioorganic Chemistry, 2019, 84, 326-338.	2.0	37
21	Molecular structure, FT-IR, FT-Raman, NBO, HOMO and LUMO, MEP, NLO and molecular docking study of 2-[(E)-2-(2-bromophenyl)ethenyl]quinoline-6-carboxylic acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 151, 184-197.	2.0	33
22	Design and synthesis of anticancer 1-hydroxynaphthalene-2-carboxanilides with a p53 independent mechanism of action. Scientific Reports, 2019, 9, 6387.	1.6	32
23	Phenothiazine derivatives - synthesis, characterization, and theoretical studies with an emphasis on the solvatochromic properties. Journal of Molecular Liquids, 2019, 285, 515-525.	2.3	31
24	Iron Chelators in Photodynamic Therapy Revisited: Synergistic Effect by Novel Highly Active Thiosemicarbazones. ACS Medicinal Chemistry Letters, 2014, 5, 336-339.	1.3	30
25	Small molecule glycoconjugates with anticancer activity. European Journal of Medicinal Chemistry, 2016, 112, 130-144.	2.6	30
26	Blocking and dislocation of Candida albicans $Cdr1p$ transporter by styrylquinolines. International Journal of Antimicrobial Agents, 2017, 50, 171-176.	1,1	29
27	Quinoline Fluorescent Probes for Zinc – from Diagnostic to Therapeutic Molecules in Treating Neurodegenerative Diseases. Medicinal Chemistry, 2018, 14, 19-33.	0.7	29
28	Prodrugs in Photodynamic Anticancer Therapy. Current Pharmaceutical Design, 2011, 17, 3548-3559.	0.9	28
29	Theoretical and Experimental Investigations of Large Stokes Shift Fluorophores Based on a Quinoline Scaffold. Molecules, 2020, 25, 2488.	1.7	28
30	Investigation of the Biological Properties of (Hetero)Aromatic Thiosemicarbazones. Molecules, 2012, 17, 13483-13502.	1.7	27
31	Spectroscopic (FT-IR, FT-Raman) investigations and quantum chemical calculations of 4-hydroxy-2-oxo-1,2-dihydroquinoline-7-carboxylic acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 121, 404-414.	2.0	24
32	Ligand-Based Virtual Screening in a Search for Novel Anti-HIV-1 Chemotypes. Journal of Chemical Information and Modeling, 2015, 55, 2168-2177.	2.5	23
33	Comprehensive exploration of the optical and biological properties of new quinoline based cellular probes. Dyes and Pigments, 2017, 144, 119-132.	2.0	23
34	New approaches to the synthesis of diphosphine dioxides and hypophosphoric acid esters. Heteroatom Chemistry, 2006, 17, 310-316.	0.4	21
35	Piperazinyl fragment improves anticancer activity of Triapine. PLoS ONE, 2018, 13, e0188767.	1.1	21
36	Synthesis of New Styrylquinoline Cellular Dyes, Fluorescent Properties, Cellular Localization and Cytotoxic Behavior. PLoS ONE, 2015, 10, e0131210.	1.1	20

#	Article	IF	CITATIONS
37	Vibrational spectroscopic studies and molecular docking study of 2-[(E)-2-phenylethenyl]quinoline-5-carboxylic acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 150, 190-199.	2.0	20
38	Developing [60]Fullerene Nanomaterials for Better Photodynamic Treatment of Non-Melanoma Skin Cancers. ACS Biomaterials Science and Engineering, 2020, 6, 5930-5940.	2.6	20
39	Glycofullerenes as non-receptor tyrosine kinase inhibitors- towards better nanotherapeutics for pancreatic cancer treatment. Scientific Reports, 2020, 10, 260.	1.6	20
40	New derivatives of 4′-phenyl-2,2':6′,2″-terpyridine as promising anticancer agents. European Journal of Medicinal Chemistry, 2021, 212, 113032.	^f 2.6	20
41	Microwave-Assisted Heterocyclic Chemistry for Undergraduate Organic Laboratory. Journal of Chemical Education, 2006, 83, 632.	1.1	18
42	Intermolecular interactions in the crystal structures of potential HIV-1 integrase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1005-1009.	1.0	18
43	New quinolone derivative: Spectroscopic characterization and reactivity study by DFT and MD approaches. Journal of Molecular Structure, 2017, 1135, 1-14.	1.8	18
44	Trisubstituted Imidazolium-Based Ionic Liquids as Innovative Heat Transfer Media in Sustainable Energy Systems. ACS Sustainable Chemistry and Engineering, 2018, 6, 7960-7968.	3.2	18
45	Vibrational spectroscopic, 1H NMR and quantum chemical computational study of 4-hydroxy-2-oxo-1,2-dihydroquinoline-8-carboxylic acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 121, 445-456.	2.0	17
46	Microwave assisted synthesis, X-ray crystallography and DFT calculations of selected aromatic thiosemicarbazones. Journal of Molecular Structure, 2013, 1037, 63-72.	1.8	16
47	4′â€Phenylâ€2,2′:6′,2′′â€terpyridine Derivatives Containing 1â€Substitutedâ€2,3â€Triazole Ring: S Characterization and Anticancer Activity. ChemistrySelect, 2018, 3, 7009-7017.	ynthesis,	16
48	The Antimicrobial Activity of Annona emarginata (Schltdl.) H. Rainer and Most Active Isolated Compounds against Clinically Important Bacteria. Molecules, 2018, 23, 1187.	1.7	16
49	X-ray and molecular modelling in fragment-based design of three small quinoline scaffolds for HIV integrase inhibitors. Bioorganic and Medicinal Chemistry, 2011, 19, 1606-1612.	1.4	15
50	Vibrational spectroscopic and molecular docking study of (2 E)- N -(4-chloro-2-oxo-1,2-dihydroquinolin-3-yl)-3-phenylprop-2-enamide. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 151, 335-349.	2.0	15
51	Iron Chelators and Exogenic Photosensitizers. Synergy through Oxidative Stress Gene Expression. Journal of Cancer, 2017, 8, 1979-1987.	1.2	15
52	Quinoline Alkaloids Against Neglected Tropical Diseases. Current Organic Chemistry, 2017, 21, .	0.9	15
53	The p53 stabilizing agent CP-31398 and multi-kinase inhibitors. Designing, synthesizing and screening of styrylquinazoline series. European Journal of Medicinal Chemistry, 2019, 163, 610-625.	2.6	14
54	Styrylquinoline – A Versatile Scaffold in Medicinal Chemistry. Medicinal Chemistry, 2020, 16, 141-154.	0.7	14

#	Article	IF	Citations
55	Terpyridines as promising antitumor agents: an overview of their discovery and development. Expert Opinion on Drug Discovery, 2022, 17, 259-271.	2.5	14
56	Bioactivity of Methoxylated and Methylated 1-Hydroxynaphthalene-2-Carboxanilides: Comparative Molecular Surface Analysis. Molecules, 2019, 24, 2991.	1.7	13
57	Antifungal Styryloquinolines as Candida albicans Efflux Pump Inhibitors: Styryloquinolines are ABC Transporter Inhibitors. Molecules, 2020, 25, 345.	1.7	13
58	Novel Benzenesulfonate Scaffolds with a High Anticancer Activity and G2/M Cell Cycle Arrest. Cancers, 2021, 13, 1790.	1.7	11
59	RP-HPLC determination of lipophilicity in series of quinoline derivatives. Open Chemistry, 2009, 7, 586-597.	1.0	10
60	Acid selective pro-dye for cellular compartments. Scientific Reports, 2019, 9, 15304.	1.6	10
61	Investigation of the Antimycobacterial Activity of 8-Hydroxyquinolines. Medicinal Chemistry, 2015, 11, 771-779.	0.7	10
62	The Landscape of the Anti-Kinase Activity of the IDH1 Inhibitors. Cancers, 2020, 12, 536.	1.7	9
63	Microwave-Assisted 1,3-dipolar Cycloadditions to Nitrogen Containing Heterocycles. Current Organic Chemistry, 2015, 19, 1410-1427.	0.9	9
64	Anticancer potential and through study of the cytotoxicity mechanism of ionic liquids that are based on the trifluoromethanesulfonate and bis(trifluoromethylsulfonyl)imide anions. Journal of Hazardous Materials, 2022, 427, 128160.	6.5	8
65	Comparative Study of the High Pressure Thermophysical Properties of 1-Ethyl-3-methylimidazolium and 1,3-Diethylimidazolium Ethyl Sulfates for Use as Sustainable and Efficient Hydraulic Fluids. ACS Sustainable Chemistry and Engineering, 2018, 6, 10934-10943.	3.2	7
66	Towards water-soluble [60]fullerenes for the delivery of siRNA in a prostate cancer model. Scientific Reports, 2021, 11, 10565.	1.6	7
67	Synthesis and applications of [60]fullerene nanoconjugate with 5-aminolevulinic acid and its glycoconjugate as drug delivery vehicles. RSC Advances, 2022, 12, 6377-6388.	1.7	6
68	Inclusion-dependent mechanism of modification of cyclodextrins with heterocycles. Open Chemistry, 2005, 3, 742-746.	1.0	4
69	Electrolytic copper as cheap and effective catalyst for one-pot triazole synthesis. Scientific Reports, 2018, 8, 4496.	1.6	4
70	Investigation of antibacterial and cytotoxic potential of phenolics derived from <i>Cistus incanus</i> L. by means of thin-layer chromatography-direct bioautography and cytotoxicity assay. Journal of Liquid Chromatography and Related Technologies, 2018, 41, 349-357.	0.5	4
71	The Usefulness of X-ray Diffraction and Thermal Analysis to Study Dietary Supplements Containing Iron. Molecules, 2022, 27, 197.	1.7	4
72	Simple Rules for Complex Near-Glass-Transition Phenomena in Medium-Sized Schiff Bases. International Journal of Molecular Sciences, 2022, 23, 5185.	1.8	3

ROBERT MUSIOL

#	Article	IF	CITATIONS
73	Glass-forming Schiff bases: Peculiar self-organizing systems with bifurcated hydrogen bonds. Journal of Molecular Liquids, 2021, , 118052.	2.3	2
74	Selected AChE reactivators in different crystalline environment: salts and enzyme. Structural Chemistry, 2010, 21, 495-501.	1.0	1
75	Preparation and Hydro-Lipophilic Properties of Methoxylated and Methylated 1-Hydroxynaphthalene-2-Carboxanilides. Proceedings (mdpi), 2018, 9, .	0.2	1