
Sandra Arias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5371903/publications.pdf Version: 2024-02-01

SANDDA ADIAS

#	Article	IF	CITATIONS
1	The Role of Polymer–AuNP Interaction in the Stimuliâ€Response Properties of PPA–AuNP Nanocomposites. Macromolecular Rapid Communications, 2022, 43, e2100616.	2.0	4
2	Implementing Zn ²⁺ ion and pH-value control into artificial mussel glue proteins by abstracting a His-rich domain from preCollagen. Soft Matter, 2021, 17, 2028-2033.	1.2	5
3	Dynamic Chiral PPA–AgNP Nanocomposites: Aligned Silver Nanoparticles Decorating Helical Polymers. Chemistry of Materials, 2021, 33, 4805-4812.	3.2	18
4	Information-Based Design of Polymeric Drug Formulation Additives. Biomacromolecules, 2021, 22, 213-221.	2.6	4
5	Chiral gold–PPA nanocomposites with tunable helical sense and morphology. Nanoscale Horizons, 2020, 5, 495-500.	4.1	17
6	Toward Artificial Musselâ€Glue Proteins: Differentiating Sequence Modules for Adhesion and Switchable Cohesion. Angewandte Chemie, 2020, 132, 18653-18657.	1.6	6
7	Toward Artificial Musselâ€Glue Proteins: Differentiating Sequence Modules for Adhesion and Switchable Cohesion. Angewandte Chemie - International Edition, 2020, 59, 18495-18499.	7.2	29
8	Chiral Conflict as a Method to Create Stimuliâ€Responsive Materials Based on Dynamic Helical Polymers. Angewandte Chemie, 2019, 131, 13499-13503.	1.6	20
9	Chiral Conflict as a Method to Create Stimuliâ€Responsive Materials Based on Dynamic Helical Polymers. Angewandte Chemie - International Edition, 2019, 58, 13365-13369.	7.2	45
10	Chiral Coalition in Helical Sense Enhancement of Copolymers: The Role of the Absolute Configuration of Comonomers. Journal of the American Chemical Society, 2018, 140, 667-674.	6.6	39
11	A general route to chiral nanostructures from helical polymers: P/M switch via dynamic metal coordination. Polymer Chemistry, 2017, 8, 3740-3745.	1.9	36
12	Unexpected Chiroâ€Thermoresponsive Behavior of Helical Poly(phenylacetylene)s Bearing Elastinâ€Based Side Chains. Angewandte Chemie, 2017, 129, 11578-11583.	1.6	17
13	Unexpected Chiroâ€Thermoresponsive Behavior of Helical Poly(phenylacetylene)s Bearing Elastinâ€Based Side Chains. Angewandte Chemie - International Edition, 2017, 56, 11420-11425.	7.2	41
14	The role of the secondary structure of helical poly(phenylacetylene)s in the formation of nanoparticles from polymer–metal complexes (HPMCs). Nanoscale, 2017, 9, 17752-17757.	2.8	35
15	Multipodal dynamic coordination involving cation–Ĩ€ interactions to control the structure of helical polymers. Chemical Communications, 2017, 53, 8573-8576.	2.2	30
16	Simultaneous Adjustment of Size and Helical Sense of Chiral Nanospheres and Nanotubes Derived from an Axially Racemic Poly(phenylacetylene). Small, 2017, 13, 1602398.	5.2	26
17	Chiral Nanostructures from Helical Copolymer-Metal Complexes: Tunable Cation-ï€ Interactions and Sergeants and Soldiers Effect. Small, 2016, 12, 238-244.	5.2	43
18	Enantiomeric Nanostructures: Chiral Nanostructures from Helical Copolymer-Metal Complexes: Tunable Cation-l€ Interactions and Sergeants and Soldiers Effect (Small 2/2016). Small, 2016, 12, 237-237.	5.2	0

#	Article	IF	CITATIONS
19	The leading role of cation–i̇́€ interactions in polymer chemistry: the control of the helical sense in solution. Polymer Chemistry, 2015, 6, 4725-4733.	1.9	55
20	Nanospheres, Nanotubes, Toroids, and Gels with Controlled Macroscopic Chirality. Angewandte Chemie - International Edition, 2014, 53, 13720-13724.	7.2	66