
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5371765/publications.pdf Version: 2024-02-01

Ρλςι *\/*ιρτλ

#	Article	IF	CITATIONS
1	Aminooxy Functionalized Oligonucleotides:Â Preparation, On-Support Derivatization, and Postsynthetic Attachment to Polymer Support. Bioconjugate Chemistry, 1999, 10, 815-823.	3.6	76
2	Utilization of Intrachain 4â€2- <i>C</i> -Azidomethylthymidine for Preparation of Oligodeoxyribonucleotide Conjugates by Click Chemistry in Solution and on a Solid Support. Bioconjugate Chemistry, 2008, 19, 1726-1734.	3.6	64
3	Solid-Phase Synthesis of Multiantennary Oligonucleotide Glycoconjugates Utilizing On-Support Oximation. Bioconjugate Chemistry, 2004, 15, 890-896.	3.6	48
4	Characterization of RNA Invasion by ¹⁹ F NMR Spectroscopy. Journal of the American Chemical Society, 2010, 132, 8560-8562.	13.7	44
5	Synthesis of Oligonucleotide Glycoconjugates Using Sequential Click and Oximation Ligations. Bioconjugate Chemistry, 2010, 21, 748-755.	3.6	42
6	Discovery of the Showdomycin Gene Cluster fromStreptomyces showdoensisATCC 15227 Yields Insight into the Biosynthetic Logic of C-Nucleoside Antibiotics. ACS Chemical Biology, 2017, 12, 1472-1477.	3.4	37
7	Orthogonally Protected Cyclo-β-tetrapeptides as Solid-Supported Scaffolds for the Synthesis of Glycoclusters. Journal of Organic Chemistry, 2006, 71, 1989-1999.	3.2	31
8	Solid-Supported Synthesis and Click Conjugation of 4â€2-C-Alkyne Functionalized Oligodeoxyribonucleotides. Bioconjugate Chemistry, 2010, 21, 1890-1901.	3.6	29
9	4′- <i>C</i> -[(4-Trifluoromethyl-1 <i>H</i> -1,2,3-triazol-1-yl)methyl]thymidine as a Sensitive ¹⁹ F NMR Sensor for the Detection of Oligonucleotide Secondary Structures. Journal of Organic Chemistry, 2014, 79, 3529-3536.	3.2	29
10	PDE6D Inhibitors with a New Design Principle Selectively Block K-Ras Activity. ACS Omega, 2020, 5, 832-842.	3.5	27
11	Solid-Supported 2′- <i>O</i> -Glycoconjugation of Oligonucleotides by Azidation and Click Reactions. Bioconjugate Chemistry, 2011, 22, 1249-1255.	3.6	24
12	Synthesis of Fluorine-Labeled Peptide Nucleic Acid Building Blocks as Sensors for the ¹⁹ F NMR Spectroscopic Detection of Different Hybridization Modes. Journal of Organic Chemistry, 2013, 78, 5153-5159.	3.2	24
13	2′- <i>O</i> -[(4-CF ₃ -triazol-1-yl)methyl] Uridine – A Sensitive ¹⁹ F NMR Sensor for the Detection of RNA Secondary Structures. Journal of Organic Chemistry, 2015, 80, 7961-7970.	3.2	24
14	¹⁹ Fâ€NMR Spectroscopic Analysis of the Binding Modes in Tripleâ€Helical Peptide Nucleic Acid (PNA)/MicroRNA Complexes. Chemistry - A European Journal, 2017, 23, 7113-7124.	3.3	24
15	Synthesis of Aminoglycoside-3′-Conjugates of 2′-O-Methyl Oligoribonucleotides and Their Invasion to a19F labeled HIV-1 TAR Model. Bioconjugate Chemistry, 2011, 22, 1559-1566.	3.6	23
16	Characterization of Gâ€Quadruplex/Hairpin Transitions of RNAs by ¹⁹ Fâ€NMR Spectroscopy. Chemistry - A European Journal, 2016, 22, 15360-15372.	3.3	22
17	Pentaerythrityltetramine Scaffolds for Solid-Phase Combinatorial Chemistry1. Journal of Organic Chemistry, 2004, 69, 2008-2016.	3.2	21
18	Solutionâ€Phase Synthesis of Short Oligoâ€2â€2â€deoxyribonucleotides by Using Clustered Nucleosides as a Soluble Support. European Journal of Organic Chemistry, 2013, 2013, 6687-6693.	2.4	21

#	Article	IF	CITATIONS
19	Solid-Supported NOTA and DOTA Chelators Useful for the Synthesis of 3′-Radiometalated Oligonucleotides. Bioconjugate Chemistry, 2012, 23, 1981-1988.	3.6	18
20	Acetylated and Methylated β-Cyclodextrins as Viable Soluble Supports for the Synthesis of Short 2′-Oligodeoxyribo-nucleotides in Solution. Molecules, 2012, 17, 12102-12120.	3.8	18
21	Characterization of C-nucleoside Antimicrobials from Streptomyces albus DSM 40763: Strepturidin is Pseudouridimycin. Scientific Reports, 2019, 9, 8935.	3.3	18
22	Synthesis and Cellular Uptake of Fluorescently Labeled Multivalent Hyaluronan Disaccharide Conjugates of Oligonucleotide Phosphorothioates. Bioconjugate Chemistry, 2008, 19, 2549-2558.	3.6	17
23	Synthesis of Aminoglycoside Conjugates of 2′-O-Methyl Oligoribonucleotides. Bioconjugate Chemistry, 2008, 19, 766-777.	3.6	16
24	Solution phase synthesis of short oligoribonucleotides on a precipitative tetrapodal support. Beilstein Journal of Organic Chemistry, 2014, 10, 2279-2285.	2.2	16
25	Synthesis of multi-galactose-conjugated 2′-O-methyl oligoribonucleotides and their in vivo imaging with positron emission tomography. Bioorganic and Medicinal Chemistry, 2014, 22, 6806-6813.	3.0	16
26	Synthesis and In Vivo PET Imaging of Hyaluronan Conjugates of Oligonucleotides. Bioconjugate Chemistry, 2016, 27, 391-403.	3.6	16
27	3-Fluoro-2-mercuri-6-methylaniline Nucleotide as a High-Affinity Nucleobase-Specific Hybridization Probe. Bioconjugate Chemistry, 2019, 30, 2183-2190.	3.6	15
28	Drug-to-Antibody Ratio Estimation via Proteoform Peak Integration in the Analysis of Antibody–Oligonucleotide Conjugates with Orbitrap Fourier Transform Mass Spectrometry. Analytical Chemistry, 2021, 93, 12930-12937.	6.5	15
29	Zinc Ion-Dependent Peptide Nucleic Acid-Based Artificial Enzyme that Cleaves RNA—Bulge Size and Sequence Dependence. Molecules, 2017, 22, 1856.	3.8	14
30	Synthesis of Azide-Modified Chondroitin Sulfate Precursors: Substrates for "Click― Conjugation with Fluorescent Labels and Oligonucleotides. Bioconjugate Chemistry, 2018, 29, 2382-2393.	3.6	12
31	Covalently Mercurated Molecular Beacon for Discriminating the Canonical Nucleobases. ChemBioChem, 2021, 22, 354-358.	2.6	12
32	Synthesis of Short Oligodeoxyribonucleotides by Phosphotriester Chemistry on a Precipitative Tetrapodal Support. European Journal of Organic Chemistry, 2013, 2013, 7886-7890.	2.4	11
33	Oxazinomycin arrests RNA polymerase at the polythymidine sequences. Nucleic Acids Research, 2019, 47, 10296-10312.	14.5	11
34	Preparation of a disulfide-linked precipitative soluble support for solution-phase synthesis of trimeric oligodeoxyribonucleotide 3Â'-(2-chlorophenylphosphate) building blocks. Beilstein Journal of Organic Chemistry, 2015, 11, 1553-1560.	2.2	9
35	Synthesis of C-5, C-2′ and C-4′-neomycin-conjugated triplex forming oligonucleotides and their affinity to DNA-duplexes. Bioorganic and Medicinal Chemistry, 2015, 23, 4472-4480.	3.0	9
36	Controlled Monofunctionalization of Molecular Spherical Nucleic Acids on a Buckminster Fullerene Core. Bioconjugate Chemistry, 2021, 32, 1130-1138.	3.6	9

#	Article	IF	CITATIONS
37	Solid-Supported Synthesis of Cryptand-like Macrobicyclic Peptides. Journal of Organic Chemistry, 2003, 68, 8534-8538.	3.2	8
38	In Vivo Bone-Targeting of Bis(phosphonate)-Conjugated Double Helical RNA Monitored by Positron Emission Tomography. Molecular Pharmaceutics, 2016, 13, 2588-2595.	4.6	8
39	γâ€(<i>S</i>)â€Guanidinylmethylâ€Modified Triplexâ€Forming Peptide Nucleic Acids Increase Hoogsteenâ€Face Affinity for a MicroRNA and Enhance Cellular Uptake. ChemBioChem, 2019, 20, 3041-3051.	2.6	8
40	The mechanism of the nucleo-sugar selection by multi-subunit RNA polymerases. Nature Communications, 2021, 12, 796.	12.8	8
41	Synthesis of Orthogonally Protected Bis(aminomethyl)malonic Acid, and Its Use as a Key Building Block in the Preparation of Cyclic Peptide Conjugates of 2-N-Alkyl-1,2,3,4-tetrahydroisoquinoline on a Solid Support. European Journal of Organic Chemistry, 2001, 2001, 3467-3473.	2.4	7
42	Synthesis of Spirobicyclic Peptides on a Solid Support. European Journal of Organic Chemistry, 2002, 2002, 3616-3621.	2.4	7
43	Conjugation of Oligonucleotides to Peptide Aldehydes via a pH-Responsive <i>N</i> -Methoxyoxazolidine Linker. Organic Letters, 2020, 22, 6714-6718.	4.6	7
44	Solid-Supported Porphyrins Useful for the Synthesis of Conjugates with Oligomeric Biomolecules. Bioconjugate Chemistry, 2016, 27, 1023-1029.	3.6	6
45	Synthesis and Applicability of Baseâ€Discriminating DNAâ€Triplexâ€Forming ¹⁹ F NMR Probes. European Journal of Organic Chemistry, 2018, 2018, 605-613.	2.4	6
46	Noninvasive and Quantitative Monitoring of the Distributions and Kinetics of MicroRNA-Targeting Molecules in Vivo by Positron Emission Tomography. Molecular Pharmaceutics, 2019, 16, 1507-1515.	4.6	6
47	Site-Specific Linking of an Oligonucleotide to Mono- and Bivalent Recombinant Antibodies with SpyCatcher-SpyTag System for Immuno-PCR. ACS Omega, 2020, 5, 24927-24934.	3.5	6
48	Solid-Supported Synthesis of Bicyclic Peptides Containing Three Parallel Peptide Chains. European Journal of Organic Chemistry, 2003, 2003, 1687-1691.	2.4	5
49	DNA-Templated <i>N</i> (Me)-Alkoxyamine Glycosylation. Organic Letters, 2018, 20, 1496-1499.	4.6	5
50	Assembly of Bleomycin Saccharide-Decorated Spherical Nucleic Acids. Bioconjugate Chemistry, 2022, 33, 206-218.	3.6	5
51	Synthesis of Biotinylated Multipodal Glycoclusters on a Solid Support. European Journal of Organic Chemistry, 2012, 2012, n/a-n/a.	2.4	4
52	Zn ²⁺ Complexes of 3,5â€Bis[(1,5,9â€triazacyclododecanâ€3â€yloxy)methyl]phenyl Conjugates of Oligonucleotides as Artificial RNases: The Effect of Oligonucleotide Conjugation on Uridine Selectivity of the Cleaving Agent. Helvetica Chimica Acta, 2013, 96, 31-43.	1.6	4
53	Expanding the Scope of the Cleavable N-(Methoxy)oxazolidine Linker for the Synthesis of Oligonucleotide Conjugates. Molecules, 2021, 26, 490.	3.8	4
54	2-Trifluoromethyl-6-mercurianiline Nucleotide, a Sensitive ¹⁹ F NMR Probe for Hg(II)-mediated Base Pairing. Journal of Organic Chemistry, 2022, 87, 137-146.	3.2	4

#	Article	IF	CITATIONS
55	Synthesis of an Azide- and Tetrazine-Functionalized [60]Fullerene and Its Controlled Decoration with Biomolecules. ACS Omega, 2022, 7, 1329-1336.	3.5	4
56	The role of the maleimide ring system on the structure-activity relationship of showdomycin. European Journal of Medicinal Chemistry, 2022, 237, 114342.	5.5	4
57	Synthesis of Aminoglycoside-2′-O-Methyl Oligoribonucleotide Fusions. Molecules, 2017, 22, 760.	3.8	3
58	Synthesis of an Alkyneâ€Modified Bleomycin Disaccharide Precursor, Conversion to a ¹⁸ F‣abeled Radiotracer, and Preliminary in vivoâ€₽ET Imaging Studies. European Journal of Organic Chemistry, 2019, 2019, 156-163.	2.4	3
59	Synthesis of fully protected trinucleotide building blocks on a disulphide-linked soluble support. RSC Advances, 2021, 11, 3892-3896.	3.6	3
60	<i>N</i> -Methoxy-1,3-oxazinane nucleic acids (MOANAs) – a configurationally flexible backbone modification allows post-synthetic incorporation of base moieties. Organic and Biomolecular Chemistry, 2022, 20, 3480-3485.	2.8	2
61	The DNA polymerase of bacteriophage YerA41 replicates its T-modified DNA in a primer-independent manner. Nucleic Acids Research, 2022, , .	14.5	2
62	Synthesis of Clycosidic (β-1′′→6, 3′ and 4′) Site Isomers of Neomycin B and their Effect on RNA and I Triplex Stability. Molecules, 2019, 24, 580.	DNA 3.8	1
63	Stability of the Phosphotriester PDE6D Inhibitors. ChemistrySelect, 2021, 6, 488-493.	1.5	1
64	More versatile synthesis of oligonucleotides. Science, 2021, 373, 1196-1197.	12.6	1
65	Immobilized Carbohydrates for Preparation of 3′â€Glycoconjugated Oligonucleotides. Current Protocols in Nucleic Acid Chemistry, 2020, 83, e122.	0.5	1