Andrew Gennery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5371724/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	International retrospective study of allogeneic hematopoietic cell transplantation for activated PI3K-delta syndrome. Journal of Allergy and Clinical Immunology, 2022, 149, 410-421.e7.	2.9	34
2	Comparison of hematopoietic cell transplant conditioning regimens for hemophagocytic lymphohistiocytosis disorders. Journal of Allergy and Clinical Immunology, 2022, 149, 1097-1104.e2.	2.9	16
3	Recommendations for uniform definitions used in newborn screening for severe combined immunodeficiency. Journal of Allergy and Clinical Immunology, 2022, 149, 1428-1436.	2.9	19
4	Hematopoietic cell transplantation in severe combined immunodeficiency: The SCETIDE 2006-2014 European cohort. Journal of Allergy and Clinical Immunology, 2022, 149, 1744-1754.e8.	2.9	51
5	Hematopoietic stem cell transplantation for Wiskott-Aldrich syndrome: an EBMT Inborn ErrorsÂWorking Party analysis. Blood, 2022, 139, 2066-2079.	1.4	33
6	Hematopoietic Cell Transplant for CD40 Ligand Deficiency—Comparing Busulfan Versus Treosulfan. Journal of Clinical Immunology, 2022, 42, 703-705.	3.8	6
7	Outcomes following SARS-CoV-2 infection in patients with primary and secondary immunodeficiency in the UK. Clinical and Experimental Immunology, 2022, 209, 247-258.	2.6	25
8	A Prospective, Multicenter Study of Closed System Extracorporeal Photopheresis for Children With Steroid-Refractory Acute Graft-Versus-Host Disease. Transplantation and Cellular Therapy, 2022, , .	1.2	3
9	T-replete HLA-matched grafts vs T-depleted HLA-mismatched grafts in inborn errors of immunity. Blood Advances, 2022, 6, 1319-1328.	5.2	8
10	Management of Chronic Graft-vsHost Disease in Children and Adolescents With ALL: Present Status and Model for a Personalised Management Plan. Frontiers in Pediatrics, 2022, 10, 808103.	1.9	8
11	Primary immune regulatory disorders: Undiagnosed needles in the haystack?. Orphanet Journal of Rare Diseases, 2022, 17, 99.	2.7	9
12	Hematopoietic stem cell transplantation for adolescents and adults with inborn errors of immunity: an EBMT IEWP study. Blood, 2022, 140, 1635-1649.	1.4	20
13	Sodium stibogluconate and CD47-SIRPα blockade overcome resistance of anti-CD20–opsonized B cells to neutrophil killing. Blood Advances, 2022, 6, 2156-2166.	5.2	12
14	TCRαβ-Depleted Haploidentical Grafts Are a Safe Alternative to HLA-Matched Unrelated Donor Stem Cell Transplants for Infants with Severe Combined Immunodeficiency. Journal of Clinical Immunology, 2022, 42, 851-858.	3.8	13
15	22q11.2 Deletion and Duplication Syndromes and COVID-19. Journal of Clinical Immunology, 2022, 42, 746-748.	3.8	2
16	Allogeneic hematopoietic stem cell transplantation for adult HLH: a retrospective study by the chronic malignancies and inborn errors working parties of EBMT. Bone Marrow Transplantation, 2022, 57, 817-823.	2.4	4
17	Hematopoietic Cell Transplantation for Adenosine Deaminase Severe Combined Immunodeficiency—Improved Outcomes in the Modern Era. Journal of Clinical Immunology, 2022, 42, 819-826.	3.8	8
18	Biomarkers for Diagnosing Febrile Illness in Immunocompromised Children: A Systematic Review of the Literature. Frontiers in Pediatrics, 2022, 10, 828569.	1.9	3

#	Article	IF	CITATIONS
19	Preemptive hematopoietic cell transplantation for asymptomatic patients with X-linked lymphoproliferative syndrome type 1. Clinical Immunology, 2022, 237, 108993.	3.2	1
20	Phenotype, genotype, treatment, and survival outcomes in patients with X-linked inhibitor of apoptosis deficiency. Journal of Allergy and Clinical Immunology, 2022, 150, 456-466.	2.9	15
21	Autoimmunity in combined immunodeficiency. , 2022, , 97-127.		1
22	Consensus Recommendations for the Clinical Management of Hematological Malignancies in Patients with DNA Double Stranded Break Disorders. Cancers, 2022, 14, 2000.	3.7	5
23	Granulocyte Transfusions in Patients with Chronic Granulomatous Disease Undergoing Hematopoietic Cell Transplantation or Gene Therapy. Journal of Clinical Immunology, 2022, 42, 1026-1035.	3.8	3
24	Seek and you shall find: immune lymphoid cells in holobiont health. Blood, 2022, 139, 2577-2578.	1.4	1
25	HSCT is effective in patients with PSTPIP1-associated myeloid-related proteinemia inflammatory (PAMI) syndrome. Journal of Allergy and Clinical Immunology, 2021, 148, 250-255.e1.	2.9	18
26	Progress in treating chronic granulomatous disease. British Journal of Haematology, 2021, 192, 251-264.	2.5	17
27	Coronavirus disease 2019 in patients with inborn errors of immunity: An international study. Journal of Allergy and Clinical Immunology, 2021, 147, 520-531.	2.9	278
28	Long-term outcomes for adults with chronic granulomatous disease in the United Kingdom. Journal of Allergy and Clinical Immunology, 2021, 147, 1104-1107.	2.9	10
29	Hematopoietic Stem Cell Transplantation Positively Affects the Natural History of Cancer in Nijmegen Breakage Syndrome. Clinical Cancer Research, 2021, 27, 575-584.	7.0	13
30	Improved survival and graft function in ex vivo T-cell depleted haploidentical hematopoietic cell transplantation for primary immunodeficiency. Bone Marrow Transplantation, 2021, 56, 1200-1204.	2.4	11
31	COVID-19 in patients with primary and secondary immunodeficiency: The United Kingdom experience. Journal of Allergy and Clinical Immunology, 2021, 147, 870-875.e1.	2.9	188
32	Transplantation for congenital heart disease is associated with an increased risk of Epstein-Barr virus–related post-transplant lymphoproliferative disorder in children. Journal of Heart and Lung Transplantation, 2021, 40, 24-32.	0.6	7
33	Outcome of Non-hematological Autoimmunity After Hematopoietic Cell Transplantation in Children with Primary Immunodeficiency. Journal of Clinical Immunology, 2021, 41, 171-184.	3.8	5
34	European dermatology forum: Updated guidelines on the use of extracorporeal photopheresis 2020 – Part 2. Journal of the European Academy of Dermatology and Venereology, 2021, 35, 27-49.	2.4	28
35	Treosulfan-based conditioning for inborn errors of immunity. Therapeutic Advances in Hematology, 2021, 12, 204062072110139.	2.5	6
36	Hematopoietic Stem Cell Transplantation Resolves the Immune Deficit Associated with STAT3-Dominant-Negative Hyper-IgE Syndrome. Journal of Clinical Immunology, 2021, 41, 934-943.	3.8	21

#	Article	IF	CITATIONS
37	Thymopoiesis, Alterations in Dendritic Cells and Tregs, and Reduced T Cell Activation in Successful Extracorporeal Photopheresis Treatment of GVHD. Journal of Clinical Immunology, 2021, 41, 1016-1030.	3.8	9
38	Adenosine Deaminase Deficient SCID with Myocardial Hypertrophy. Journal of Clinical Immunology, 2021, 41, 1128-1130.	3.8	3
39	STAT3 Hyper-IgE Syndrome—an Update and Unanswered Questions. Journal of Clinical Immunology, 2021, 41, 864-880.	3.8	63
40	Haematopoietic Stem Cell Transplant for Norovirus-Induced Intestinal Failure in X-linked Agammaglobulinemia. Journal of Clinical Immunology, 2021, 41, 1574-1581.	3.8	4
41	Thymic Epithelial Cell Alterations and Defective Thymopoiesis Lead to Central and Peripheral Tolerance Perturbation in MHCII Deficiency. Frontiers in Immunology, 2021, 12, 669943.	4.8	8
42	Congenital nephrotic syndrome in IL7Rα-SCID: A rare feature of maternofetal graft-versus-host disease. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 4151-4153.e1.	3.8	2
43	EBMT/ESID inborn errors working party guidelines for hematopoietic stem cell transplantation for inborn errors of immunity. Bone Marrow Transplantation, 2021, 56, 2052-2062.	2.4	95
44	Newborn screening for severe combined immunodeficiency—Coming to a region near you soon. Clinical and Experimental Immunology, 2021, 205, 343-345.	2.6	2
45	Stem cell transplantation as treatment for major histocompatibility class I deficiency. Clinical Immunology, 2021, 229, 108801.	3.2	3
46	HSCT in two brothers with CGD arising from mutations in CYBC1 corrects the defect in neutrophil function. Clinical Immunology, 2021, 229, 108799.	3.2	3
47	Outcome of Hematopoietic Stem Cell Transplantation in patients with Mendelian Susceptibility to Mycobacterial Diseases. Journal of Clinical Immunology, 2021, 41, 1774-1780.	3.8	3
48	Hematopoietic Cell Transplantation Ameliorates Autoinflammation in A20 Haploinsufficiency. Journal of Clinical Immunology, 2021, 41, 1954-1956.	3.8	9
49	COVID-19 and X-linked agammaglobulinemia (XLA) – insights from a monogenic antibody deficiency. Current Opinion in Allergy and Clinical Immunology, 2021, 21, 525-534.	2.3	22
50	Management of inborn errors of immunity. , 2021, , 345-361.		0
51	Evaluation of newborn screening for severe combined immunodeficiency (SCID). British Journal of General Practice, 2021, 71, 456-457.	1.4	0
52	Establishing Newborn Screening for SCID in the USA: Experience in California. International Journal of Neonatal Screening, 2021, 7, 72.	3.2	7
53	Allogeneic hematopoietic stem cell transplantation in leukocyte adhesion deficiency type I and III. Blood Advances, 2021, 5, 262-273.	5.2	9
54	UK national survey of anticoagulation in extraâ€corporeal photopheresis—ls it time for a UK consensus statement?. Transfusion Medicine, 2021, , .	1.1	0

#	Article	IF	CITATIONS
55	Granulomatous–lymphocytic interstitial lung disease: an international research prioritisation. ERJ Open Research, 2021, 7, 00467-2021.	2.6	6
56	The EHA Research Roadmap: Infections in Hematology. HemaSphere, 2021, 5, e662.	2.7	5
57	Combined T and B Lymphocyte Deficiencies. , 2021, , .		0
58	Proposed Therapeutic Range of Treosulfan in Reduced Toxicity Pediatric Allogeneic Hematopoietic Stem Cell Transplant Conditioning: Results From a Prospective Trial. Clinical Pharmacology and Therapeutics, 2020, 108, 264-273.	4.7	22
59	Long-term outcome of LRBA deficiency in 76 patients after various treatment modalities as evaluated by the immune deficiency and dysregulation activity (IDDA) score. Journal of Allergy and Clinical Immunology, 2020, 145, 1452-1463.	2.9	112
60	Developing a career in academic paediatrics. Paediatrics and Child Health (United Kingdom), 2020, 30, 70-73.	0.4	0
61	European dermatology forum – updated guidelines on the use of extracorporeal photopheresis 2020 – part 1. Journal of the European Academy of Dermatology and Venereology, 2020, 34, 2693-2716.	2.4	49
62	Hematopoietic Stem Cell Transplantation and Vasculopathy Associated With STAT3-Dominant-Negative Hyper-IgE Syndrome. Frontiers in Pediatrics, 2020, 8, 575.	1.9	7
63	Managing Granulomatous–Lymphocytic Interstitial Lung Disease in Common Variable Immunodeficiency Disorders: e-GLILDnet International Clinicians Survey. Frontiers in Immunology, 2020, 11, 606333.	4.8	10
64	CD27-CD70 defects: a wolf in wolf's clothing?. Blood, 2020, 136, 2600-2602.	1.4	2
65	Systematic Review of Primary Immunodeficiency Diseases in Malaysia: 1979–2020. Frontiers in Immunology, 2020, 11, 1923.	4.8	11
66	The challenges presented by haematopoietic stem cell transplantation in children with primary immunodeficiency. British Medical Bulletin, 2020, 135, 4-15.	6.9	3
67	Diagnosis and management of severe combined immunodeficiency in Australia and New Zealand. Journal of Paediatrics and Child Health, 2020, 56, 1508-1513.	0.8	4
68	UK national audit of extracorporeal photopheresis (ECP) in chronic graft versus host disease. Leukemia and Lymphoma, 2020, 61, 3511-3514.	1.3	1
69	A survey of extracorporeal photopheresis treatment in pediatric patients in the United Kingdom. EJHaem, 2020, 1, 293-296.	1.0	1
70	COVIDâ€19 – Impact on Childhood Haematology Patients. HemaSphere, 2020, 4, e465.	2.7	9
71	Guidelines on the use of irradiated blood components. British Journal of Haematology, 2020, 191, 704-724.	2.5	61
72	BCG lymphadenitis: a potential complication of immune reconstitution following haematopoietic stem cell transplant. Archives of Disease in Childhood: Education and Practice Edition, 2020, , edpract-2020-320883.	0.5	1

#	Article	IF	CITATIONS
73	HSCT provides effective treatment for lymphoproliferative disorders in children with primary immunodeficiency. Journal of Allergy and Clinical Immunology, 2020, 146, 447-450.	2.9	8
74	Targeted busulfan-based reduced-intensity conditioning and HLA-matched HSCT cure hemophagocytic lymphohistiocytosis. Blood Advances, 2020, 4, 1998-2010.	5.2	30
75	Impact of Different Ex Vivo T-Cell Depletion Strategies on Outcomes Following Hematopoietic Cell Transplantation for Children with Primary Immunodeficiency. Biology of Blood and Marrow Transplantation, 2020, 26, S17-S18.	2.0	0
76	New insights into risk factors for transplant-associated thrombotic microangiopathy in pediatric HSCT. Blood Advances, 2020, 4, 2418-2429.	5.2	24
77	Hematopoietic Cell Transplantation in Patients With Primary Immune Regulatory Disorders (PIRD): A Primary Immune Deficiency Treatment Consortium (PIDTC) Survey. Frontiers in Immunology, 2020, 11, 239.	4.8	57
78	Neonatal thymectomy in children—accelerating the immunologic clock?. Journal of Allergy and Clinical Immunology, 2020, 146, 236-243.	2.9	27
79	Update on DNA-Double Strand Break Repair Defects in Combined Primary Immunodeficiency. Current Allergy and Asthma Reports, 2020, 20, 57.	5.3	15
80	Hematopoietic cell transplantation in chronic granulomatous disease: a study of 712 children and adults. Blood, 2020, 136, 1201-1211.	1.4	97
81	Hematopoietic stem cell transplantation for primary immune deficiencies. , 2020, , 1175-1214.		0
82	Outcome and Risk Factors of Autoimmune Cytopenia after Hematopoietic Cell Transplantation for Children with Primary Immunodeficiency. Biology of Blood and Marrow Transplantation, 2020, 26, S208.	2.0	0
83	Primary Immunodeficiency Diseases and Bacillus Calmette-Guérin (BCC)-Vaccine–Derived Complications: A Systematic Review. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 1371-1386.	3.8	51
84	International Retrospective Study of Allogeneic Hematopoietic Cell Transplantation (HCT) for Activated Phosphoinositide 3-Kinase Delta (PI3K) Syndrome. Biology of Blood and Marrow Transplantation, 2020, 26, S14-S15.	2.0	4
85	Cutaneous barrier leakage and gut inflammation drive skin disease in Omenn syndrome. Journal of Allergy and Clinical Immunology, 2020, 146, 1165-1179.e11.	2.9	13
86	Improved transplant survival and long-term disease outcome in children with MHC class II deficiency. Blood, 2020, 135, 954-973.	1.4	23
87	Outcome of autoimmune cytopenia after hematopoietic cell transplantation in primary immunodeficiency. Journal of Allergy and Clinical Immunology, 2020, 146, 406-416.	2.9	18
88	Conditioning Regimens and Outcomes after Allogeneic Hematopoietic Cell Transplant for Hyperinflammatory Inborn Errors of Immunity. Blood, 2020, 136, 36-37.	1.4	0
89	Hematopoietic stem cell transplantation for cytidine triphosphate synthase 1 (CTPS1) deficiency. Bone Marrow Transplantation, 2019, 54, 130-133.	2.4	13
90	Recombination activity of human recombination-activating gene 2 (RAG2) mutations and correlation with clinical phenotype. Journal of Allergy and Clinical Immunology, 2019, 143, 726-735.	2.9	39

#	Article	IF	CITATIONS
91	Editorial: The Relationship Between Cancer Predisposition and Primary Immunodeficiency. Frontiers in Immunology, 2019, 10, 1781.	4.8	15
92	Allogeneic HSCT for Autoimmune Diseases: A Retrospective Study From the EBMT ADWP, IEWP, and PDWP Working Parties. Frontiers in Immunology, 2019, 10, 1570.	4.8	48
93	Late relapse of primary hemophagocytic lymphohistiocytosis after hematopoietic stem cell transplantation: a consequence of low-level chimerism from a carrier donor?. Immunologic Research, 2019, 67, 261-264.	2.9	0
94	Long Term Outcome and Immune Function After Hematopoietic Stem Cell Transplantation for Primary Immunodeficiency. Frontiers in Pediatrics, 2019, 7, 381.	1.9	31
95	Adoptive T Cell Therapy Strategies for Viral Infections in Patients Receiving Haematopoietic Stem Cell Transplantation. Cells, 2019, 8, 47.	4.1	32
96	Gonadal Function after Busulfan Compared with Treosulfan in Children and Adolescents Undergoing Allogeneic Hematopoietic Stem Cell Transplant. Biology of Blood and Marrow Transplantation, 2019, 25, 1786-1791.	2.0	42
97	Recent advances in understanding RAG deficiencies. F1000Research, 2019, 8, 148.	1.6	27
98	New graft manipulation strategies improve the outcome of mismatched stem cell transplantation in children with primary immunodeficiencies. Journal of Allergy and Clinical Immunology, 2019, 144, 280-293.	2.9	35
99	Two decades of excellent transplant survival for chronic granulomatous disease: a supraregional immunology transplant center report. Blood, 2019, 133, 2546-2549.	1.4	26
100	Health-Related Quality of Life and Emotional Health in X-Linked Carriers of Chronic Granulomatous Disease in the United Kingdom. Journal of Clinical Immunology, 2019, 39, 195-199.	3.8	9
101	Indications for haematopoietic stem cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2019. Bone Marrow Transplantation, 2019, 54, 1525-1552.	2.4	218
102	Combined liver and hematopoietic stem cell transplantation in patients with X-linked hyper-IgM syndrome. Journal of Allergy and Clinical Immunology, 2019, 143, 1952-1956.e6.	2.9	10
103	Hematopoietic Cell Transplantation for MHC Class II Deficiency. Frontiers in Pediatrics, 2019, 7, 516.	1.9	13
104	Universal donor strategy for primary immunodeficiency. Blood, 2019, 134, 1688-1689.	1.4	0
105	Choice of conditioning regimens for bone marrow transplantation in severe aplastic anemia. Blood Advances, 2019, 3, 3123-3131.	5.2	37
106	Conditioning Regimens for Hematopoietic Cell Transplantation in Primary Immunodeficiency. Current Allergy and Asthma Reports, 2019, 19, 52.	5.3	19
107	Hematopoietic Stem Cell Transplantation for Primary Immunodeficiencies. Frontiers in Pediatrics, 2019, 7, 445.	1.9	24
108	An update on X-Linked agammaglobulinaemia: clinical manifestations and management. Current Opinion in Allergy and Clinical Immunology, 2019, 19, 571-577.	2.3	11

#	Article	IF	CITATIONS
109	Solid organ transplantation after hematopoietic stem cell transplantation in childhood: A multicentric retrospective survey. American Journal of Transplantation, 2019, 19, 1798-1805.	4.7	9
110	Hematopoietic Stem Cell Transplantation as Treatment for Patients with DOCK8 Deficiency. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 848-855.	3.8	67
111	Pulmonary Manifestations of Combined T- and B-Cell Immunodeficiencies. , 2019, , 37-75.		0
112	Hematopoietic Stem Cell Transplantation for DNA Double Strand Breakage Repair Disorders. Frontiers in Pediatrics, 2019, 7, 557.	1.9	14
113	Primary Immunodeficiencies. , 2019, , 663-670.		2
114	Class-Switch Recombination Defects. Rare Diseases of the Immune System, 2019, , 179-199.	0.1	0
115	Erythrodermic Rash and Seizures. , 2019, , 695-699.		0
116	Thymopoiesis following HSCT; a retrospective review comparing interventions for aGVHD in a pediatric cohort. Clinical Immunology, 2018, 193, 33-37.	3.2	9
117	Endothelial cell damage in idiopathic pneumonia syndrome. Bone Marrow Transplantation, 2018, 53, 515-518.	2.4	13
118	In vivo T-depleted reduced-intensity transplantation for GATA2-related immune dysfunction. Blood, 2018, 131, 1383-1387.	1.4	32
119	Hematopoietic cell transplantation in primary immunodeficiency – conventional and emerging indications. Expert Review of Clinical Immunology, 2018, 14, 103-114.	3.0	42
120	Adenosine deaminase deficiency: a review. Orphanet Journal of Rare Diseases, 2018, 13, 65.	2.7	144
121	Recommendations from the European Society for Blood and Marrow Transplantation (EBMT) for a curriculum in hematopoietic cell transplantation. Bone Marrow Transplantation, 2018, 53, 1548-1552.	2.4	6
122	Non-posttransplant lymphoproliferative disorder malignancy after hematopoietic stem cell transplantation in patients with primary immunodeficiency: UK experience. Journal of Allergy and Clinical Immunology, 2018, 141, 2319-2321.e1.	2.9	7
123	Ikaros family zinc finger 1 regulates dendritic cell development and function in humans. Nature Communications, 2018, 9, 1239.	12.8	62
124	Clinical considerations in the hematopoietic stem cell transplant management of primary immunodeficiencies. Expert Review of Clinical Immunology, 2018, 14, 297-306.	3.0	24
125	Outcome of hematopoietic cell transplantation for DNA double-strand break repair disorders. Journal of Allergy and Clinical Immunology, 2018, 141, 322-328.e10.	2.9	79
126	Treatment of severe forms of LPS-responsive beige-like anchor protein deficiency with allogeneic hematopoietic stem cell transplantation. Journal of Allergy and Clinical Immunology, 2018, 141, 770-775.e1.	2.9	52

#	Article	IF	CITATIONS
127	Hematopoietic stem cell transplantation in patients with gain-of-function signal transducer and activator of transcription 1 mutations. Journal of Allergy and Clinical Immunology, 2018, 141, 704-717.e5.	2.9	128
128	Treosulfan and Fludarabine Conditioning for Hematopoietic Stem Cell Transplantation in Children with Primary Immunodeficiency: UK Experience. Biology of Blood and Marrow Transplantation, 2018, 24, 529-536.	2.0	75
129	Biallelic interferon regulatory factor 8 mutation: AÂcomplex immunodeficiency syndrome with dendritic cell deficiency, monocytopenia, and immune dysregulation. Journal of Allergy and Clinical Immunology, 2018, 141, 2234-2248.	2.9	63
130	T-cell receptor αβ+ and CD19+ cell–depleted haploidentical and mismatched hematopoietic stem cell transplantation in primary immune deficiency. Journal of Allergy and Clinical Immunology, 2018, 141, 1417-1426.e1.	2.9	119
131	Transplantation of Hematopoietic Stem Cells for Primary Immunodeficiencies in Brazil: Challenges in Treating Rare Diseases in Developing Countries. Journal of Clinical Immunology, 2018, 38, 917-926.	3.8	13
132	Current Understanding and Future Research Priorities in Malignancy Associated With Inborn Errors of Immunity and DNA Repair Disorders: The Perspective of an Interdisciplinary Working Group. Frontiers in Immunology, 2018, 9, 2912.	4.8	48
133	Predicting the future with TRECs. Blood, 2018, 132, 1731-1733.	1.4	2
134	Jakinibs for the treatment of immune dysregulation in patients with gain-of-function signal transducer and activator of transcription 1 (STAT1) or STAT3 mutations. Journal of Allergy and Clinical Immunology, 2018, 142, 1665-1669.	2.9	196
135	Allogeneic hematopoietic stem cell transplantation for severe, refractory juvenile idiopathic arthritis. Blood Advances, 2018, 2, 777-786.	5.2	37
136	Early and late outcomes after cord blood transplantation for pediatric patients with inherited leukodystrophies. Blood Advances, 2018, 2, 49-60.	5.2	45
137	Multicenter phase 1/2 application of adenovirus-specific T cells in high-risk pediatric patients after allogeneic stem cell transplantation. Cytotherapy, 2018, 20, 830-838.	0.7	20
138	Outcome of domino hematopoietic stem cell transplantation in human subjects: An international case series. Journal of Allergy and Clinical Immunology, 2018, 142, 1628-1631.e4.	2.9	1
139	Interleukin-2-Inducible T-Cell Kinase Deficiency—New Patients, New Insight?. Frontiers in Immunology, 2018, 9, 979.	4.8	31
140	Long-Term Health Outcome and Quality of Life Post-HSCT for IL7Rα-, Artemis-, RAG1- and RAG2-Deficient Severe Combined Immunodeficiency: a Single Center Report. Journal of Clinical Immunology, 2018, 38, 727-732.	3.8	32
141	The International Alliance of Primary Immune Deficiency Societies. Journal of Clinical Immunology, 2018, 38, 447-449.	3.8	2
142	Advances in genetic and molecular understanding of Omenn syndrome - implications for the future. Expert Opinion on Orphan Drugs, 2018, 6, 351-359.	0.8	2
143	Busulfan/Fludarabine- or Treosulfan/Fludarabine-Based Conditioning Regimen in Patients with Wiskott-Aldrich Syndrome Given Allogeneic Hematopoietic Cell Transplantation — an EBMT Inborn Errors Working Party and Scetide Retrospective Analysis. Blood, 2018, 132, 2175-2175.	1.4	4
144	Allogeneic Hematopoietic Stem Cell Transplantation in Children and Adults with Chronic Granulomatous Disease (CGD): A Study of the Inborn Errors Working Party (IEWP) of the EBMT. Blood, 2018, 132, 970-970.	1.4	2

#	Article	IF	CITATIONS
145	Current Knowledge and Priorities for Future Research in Late Effects after Hematopoietic Stem Cell Transplantation (HCT) for Severe Combined Immunodeficiency Patients: A Consensus Statement from the Second Pediatric Blood and Marrow Transplant Consortium International Conference on Late Effects after Pediatric HCT. Biology of Blood and Marrow Transplantation, 2017, 23, 379-387.	2.0	49
146	Use of defibrotide to treat transplant-associated thrombotic microangiopathy: a retrospective study of the Paediatric Diseases and Inborn Errors Working Parties of the European Society of Blood and Marrow Transplantation. Bone Marrow Transplantation, 2017, 52, 762-764.	2.4	39
147	Long-term outcome of hematopoietic stem cell transplantation for IL2RG/JAK3 SCID: a cohort report. Blood, 2017, 129, 2198-2201.	1.4	54
148	The role of extracorporeal photopheresis in the management of cutaneous Tâ€cell lymphoma, graftâ€versusâ€host disease and organ transplant rejection: a consensus statement update from the UK Photopheresis Society. British Journal of Haematology, 2017, 177, 287-310.	2.5	109
149	A risk factor analysis of outcomes after unrelated cord blood transplantation for children with Wiskott-Aldrich syndrome. Haematologica, 2017, 102, 1112-1119.	3.5	30
150	Raised Serum IL-8 Levels Are Associated with Excessive Fatigue in Female Carriers of X-Linked Chronic Granulomatous Disease in the UK. Journal of Clinical Immunology, 2017, 37, 279-281.	3.8	6
151	Recommendations for Screening and Management of Late Effects in Patients with Severe Combined Immunodeficiency after Allogenic Hematopoietic Cell Transplantation: A Consensus Statement from the Second Pediatric Blood and Marrow Transplant Consortium International Conference on Late Effects after Pediatric HCT. Biology of Blood and Marrow Transplantation. 2017. 23. 1229-1240.	2.0	44
152	Enterovirus-Related Immune Reconstitution Inflammatory Syndrome (IRIS) Following Haploidentical Stem Cell Transplantation in an MHC Class II-Deficient Child. Journal of Clinical Immunology, 2017, 37, 419-421.	3.8	7
153	Reticular dysgenesis: international survey on clinical presentation, transplantation, and outcome. Blood, 2017, 129, 2928-2938.	1.4	31
154	Inflammatory and autoimmune manifestations in X-linked carriers of chronic granulomatous disease in the United Kingdom. Journal of Allergy and Clinical Immunology, 2017, 140, 628-630.e6.	2.9	48
155	Approaches to the removal of T-lymphocytes to minimize graft-versus-host disease in patients with primary immunodeficiencies who do not have a matched sibling donor. Current Opinion in Allergy and Clinical Immunology, 2017, 17, 414-420.	2.3	11
156	Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1. Science Translational Medicine, 2017, 9, .	12.4	176
157	X-Linked Agammaglobulinaemia: Outcomes in the modern era. Clinical Immunology, 2017, 183, 54-62.	3.2	72
158	Hematopoietic stem cell transplantation in 29 patients hemizygous for hypomorphic IKBKG/NEMO mutations. Blood, 2017, 130, 1456-1467.	1.4	95
159	Identification of Heterozygous Single- and Multi-exon Deletions in IL7R by Whole Exome Sequencing. Journal of Clinical Immunology, 2017, 37, 42-50.	3.8	20
160	Hematopoietic stem cell transplant in patients with activated PI3K delta syndrome. Journal of Allergy and Clinical Immunology, 2017, 139, 1046-1049.	2.9	90
161	A prospective study on the natural history of patients with profound combined immunodeficiency: An interim analysis. Journal of Allergy and Clinical Immunology, 2017, 139, 1302-1310.e4.	2.9	71
162	Long-term outcomes of 176 patients with X-linked hyper-IgM syndrome treated with or without hematopoietic cell transplantation. Journal of Allergy and Clinical Immunology, 2017, 139, 1282-1292.	2.9	107

#	Article	IF	CITATIONS
163	Treatment of Pediatric Acute Graft-versus-Host Disease—Lessons from Primary Immunodeficiency?. Frontiers in Immunology, 2017, 8, 328.	4.8	13
164	Natural Killer Cells from Patients with Recombinase-Activating Gene and Non-Homologous End Joining Gene Defects Comprise a Higher Frequency of CD56bright NKG2A+++ Cells, and Yet Display Increased Degranulation and Higher Perforin Content. Frontiers in Immunology, 2017, 8, 798.	4.8	41
165	Infusion of Sibling Marrow in a Patient with Purine Nucleoside Phosphorylase Deficiency Leads to Split Mixed Donor Chimerism and Normal Immunity. Frontiers in Pediatrics, 2017, 5, 143.	1.9	15
166	Recent advances in understanding and treating chronic granulomatous disease. F1000Research, 2017, 6, 1427.	1.6	12
167	Other Well-Defined Immunodeficiencies. , 2017, , 461-517.		1
168	Characterization of T and B cell repertoire diversity in patients with RAG deficiency. Science Immunology, 2016, 1, .	11.9	88
169	The Evolving Landscape of Primary Immunodeficiencies. Journal of Clinical Immunology, 2016, 36, 339-340.	3.8	7
170	Limited thymic recovery after extracorporeal photopheresis in a low-body-weight patient with acute graft-versus-host disease of the skin. Journal of Allergy and Clinical Immunology, 2016, 137, 1890-1893.e1.	2.9	7
171	Functional changes in gut microbiota during hematopoietic stem cell transplantation for severe combined immunodeficiency. Journal of Allergy and Clinical Immunology, 2016, 138, 622-625.e3.	2.9	8
172	Respiratory Health and Related Quality of Life in Patients with Congenital Agammaglobulinemia in the Northern Region of the UK. Journal of Clinical Immunology, 2016, 36, 472-479.	3.8	16
173	Presenting features and platelet anomalies in WAS: one centre's experience. Journal of Clinical Immunology, 2016, 36, 354-356.	3.8	0
174	Hematopoietic stem cell transplantation for CTLA4 deficiency. Journal of Allergy and Clinical Immunology, 2016, 138, 615-619.e1.	2.9	88
175	The sting of WASP deficiency: autoimmunity exposed. Blood, 2016, 127, 173-175.	1.4	2
176	Treosulfan-based conditioning for allogeneic HSCT in children with chronic granulomatous disease: a multicenter experience. Blood, 2016, 128, 440-448.	1.4	116
177	Gene therapy for PID: the end of the beginning?. Blood, 2016, 128, 7-8.	1.4	2
178	Outcomes after Unrelated Umbilical Cord Blood Transplantation for Children with Osteopetrosis. Biology of Blood and Marrow Transplantation, 2016, 22, 1997-2002.	2.0	17
179	<scp>UK</scp> experience of unrelated cord blood transplantation in paediatric patients. British Journal of Haematology, 2016, 172, 482-486.	2.5	6
180	Primary Immunodeficiency Disorders: Diagnosis and Management. , 2016, , 575-584.		0

11

#	Article	IF	CITATIONS
181	DNA ligase IV syndrome; a review. Orphanet Journal of Rare Diseases, 2016, 11, 137.	2.7	81
182	Clinical and immunologic phenotype associated with activated phosphoinositide 3-kinase δ syndrome 2: AÂcohort study. Journal of Allergy and Clinical Immunology, 2016, 138, 210-218.e9.	2.9	215
183	Haploidentical CD3 TCRαβ and CD19-depleted second stem cell transplant for steroid-resistant acute skin graft versus host disease. Journal of Allergy and Clinical Immunology, 2016, 138, 603-605.e1.	2.9	4
184	Adoptive immunotherapy for primary immunodeficiency disorders with virus-specific T lymphocytes. Journal of Allergy and Clinical Immunology, 2016, 137, 1498-1505.e1.	2.9	117
185	Autosomal Dominant Hyper IgE Syndrome – Treatment Strategies and Clinical Outcomes. Journal of Clinical Immunology, 2016, 36, 107-109.	3.8	9
186	Allogeneic Hematopoietic Stem Cell Transplantation in Hemophagocytic Lymphohistiocytosis (HLH) in Adults: A Retrospective Study of the Chronic Malignancies and Inborn Errors Working Parties (CMWP) Tj ETQq0	00.ægBT/	Ov e rlock 10⊺
187	Extracoporeal photopheresis treatment of acute graft-versus-host disease following allogeneic haematopoietic stem cell transplantation. F1000Research, 2016, 5, 1510.	1.6	3
188	Contemporary Conditioning Regimen before Allogeneic Stem Cell Transplantation for Children with Non-Malignant Diseases. Blood, 2016, 128, 3398-3398.	1.4	0
189	The syndrome of hemophagocytic lymphohistiocytosis in primary immunodeficiencies: implications for differential diagnosis and pathogenesis. Haematologica, 2015, 100, 978-988.	3.5	161
190	Gainâ€ofâ€function STAT1 mutations impair STAT3 activity in patients with chronic mucocutaneous candidiasis (CMC). European Journal of Immunology, 2015, 45, 2834-2846.	2.9	111
191	Chronic Infection with Rotavirus Vaccine Strains in UK Children with Severe Combined Immunodeficiency. Pediatric Infectious Disease Journal, 2015, 34, 1040-1041.	2.0	18
192	Radiation-sensitive severe combined immunodeficiency: The arguments for and against conditioning before hematopoietic cell transplantation—what to do?. Journal of Allergy and Clinical Immunology, 2015, 136, 1178-1185.	2.9	63
193	The extended clinical phenotype of 64 patients with dedicator of cytokinesis 8 deficiency. Journal of Allergy and Clinical Immunology, 2015, 136, 402-412.	2.9	163
194	Primary immunodeficiencies: not just paediatric diseases. European Respiratory Journal, 2015, 45, 1521-1523.	6.7	6
195	Gut immune reconstitution in immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome after hematopoietic stem cell transplantation. Journal of Allergy and Clinical Immunology, 2015, 135, 260-262.e8.	2.9	10
196	DOCK8 Deficiency: Clinical and Immunological Phenotype and Treatment Options - a Review of 136 Patients. Journal of Clinical Immunology, 2015, 35, 189-198.	3.8	284
197	Editorial Commentary: Severe Infections in Patients With Chronic Granulomatous Disease. Clinical Infectious Diseases, 2015, 60, 1184-1185.	5.8	2
198	Multicenter experience in hematopoietic stem cell transplantation for serious complications of common variable immunodeficiency. Journal of Allergy and Clinical Immunology, 2015, 135, 988-997.e6.	2.9	123

#	Article	IF	CITATIONS
199	Gut microbiome variations during hematopoietic stem cell transplant in severe combined immunodeficiency. Journal of Allergy and Clinical Immunology, 2015, 135, 1654-1656.e2.	2.9	18
200	XRCC4 deficiency in human subjects causes a marked neurological phenotype but no overt immunodeficiency. Journal of Allergy and Clinical Immunology, 2015, 136, 1007-1017.	2.9	44
201	Effect of persistent versus transient donor-specific HLA antibodies on graft outcomes in pediatric cardiac transplantation. Journal of Heart and Lung Transplantation, 2015, 34, 1310-1317.	0.6	39
202	ABO-incompatible cardiac transplantation in pediatric patients with high isohemagglutinin titers. Journal of Heart and Lung Transplantation, 2015, 34, 1095-1102.	0.6	28
203	Variable Phenotype of Severe Immunodeficiencies Associated with RMRP Gene Mutations. Journal of Clinical Immunology, 2015, 35, 147-157.	3.8	20
204	Mutations in CDCA7 and HELLS cause immunodeficiency–centromeric instability–facial anomalies syndrome. Nature Communications, 2015, 6, 7870.	12.8	148
205	Treosulfan-based conditioning regimens for allogeneic haematopoietic stem cell transplantation in children with non-malignant diseases. Bone Marrow Transplantation, 2015, 50, 1536-1541.	2.4	67
206	Cytoreductive conditioning for severe combined immunodeficiency – help or hindrance?. Expert Review of Clinical Immunology, 2015, 11, 785-788.	3.0	4
207	Nijmegen Breakage Syndrome: Clinical and Immunological Features, Long-Term Outcome and Treatment Options – a Retrospective Analysis. Journal of Clinical Immunology, 2015, 35, 538-549.	3.8	73
208	Mutation of TNFRSF13B in a child with 22q11Âdeletion syndrome associated with granulomatous lymphoproliferation. Journal of Allergy and Clinical Immunology, 2015, 135, 559-561.	2.9	7
209	Broad-spectrum antibodies against self-antigens and cytokines in RAG deficiency. Journal of Clinical Investigation, 2015, 125, 4135-4148.	8.2	159
210	Recent advances in treatment of severe primary immunodeficiencies. F1000Research, 2015, 4, 1459.	1.6	8
211	Hematopoietic Stem Cell Transplantation for Primary Immunodeficiency. , 2014, , 1007-1041.		0
212	Selective demethylation and altered gene expression are associated with ICF syndrome in human-induced pluripotent stem cells and mesenchymal stem cells. Human Molecular Genetics, 2014, 23, 6448-6457.	2.9	26
213	Utility of inflammatory markers in predicting the aetiology of pneumonia in children. Diagnostic Microbiology and Infectious Disease, 2014, 79, 458-462.	1.8	38
214	Host natural killer immunity is a key indicator of permissiveness for donor cell engraftment in patients with severe combined immunodeficiency. Journal of Allergy and Clinical Immunology, 2014, 133, 1660-1666.	2.9	45
215	Towards a safety net for management of 22q11.2 deletion syndrome: guidelines for our times. European Journal of Pediatrics, 2014, 173, 757-765.	2.7	62
216	BCG vaccination in patients with severe combined immunodeficiency: Complications, risks, and vaccination policies. Journal of Allergy and Clinical Immunology, 2014, 133, 1134-1141.	2.9	212

#	Article	IF	CITATIONS
217	Diagnosis of immunodeficiency caused by a purine nucleoside phosphorylase defect by using tandem mass spectrometry on dried blood spots. Journal of Allergy and Clinical Immunology, 2014, 134, 155-159.e3.	2.9	56
218	Gene Therapy for Primary Immunodeficiencies: Current Status and Future Prospects. Drugs, 2014, 74, 963-969.	10.9	26
219	A systematic analysis of recombination activity andÂgenotype-phenotype correlation in human recombination-activating gene 1 deficiency. Journal of Allergy and Clinical Immunology, 2014, 133, 1099-1108.e12.	2.9	132
220	Human syndromes of immunodeficiency and dysregulation are characterized by distinct defects in T-cell receptor repertoire development. Journal of Allergy and Clinical Immunology, 2014, 133, 1109-1115.e14.	2.9	62
221	The evolution of cellular deficiency in GATA2 mutation. Blood, 2014, 123, 863-874.	1.4	189
222	Hematopoietic Stem Cell Transplantation for Primary Immunodeficiencies. Hematology/Oncology Clinics of North America, 2014, 28, 1157-1170.	2.2	17
223	Haploidentical T-cell alpha beta receptor andÂCD19–depleted stem cell transplant for Wiskott-Aldrich syndrome. Journal of Allergy and Clinical Immunology, 2014, 134, 1199-1201.	2.9	36
224	Comparison of outcomes of hematopoietic stem cell transplantation without chemotherapy conditioning by using matched sibling and unrelated donors for treatment ofÂsevere combined immunodeficiency. Journal of Allergy and Clinical Immunology, 2014, 134, 935-943.e15.	2.9	82
225	The clinical impact of deficiency in DNA non-homologous end-joining. DNA Repair, 2014, 16, 84-96.	2.8	138
226	Reduced-intensity conditioning and HLA-matched haemopoietic stem-cell transplantation in patients with chronic granulomatous disease: a prospective multicentre study. Lancet, The, 2014, 383, 436-448.	13.7	322
227	Low-Dose Serotherapy Improves Early Immune Reconstitution after Cord Blood Transplantation for Primary Immunodeficiencies. Biology of Blood and Marrow Transplantation, 2014, 20, 243-249.	2.0	28
228	Reprint of "The clinical impact of deficiency in DNA non-homologous end-joining― DNA Repair, 2014, 17, 9-20.	2.8	11
229	Differential role of nonhomologous end joining factors in the generation, DNA damage response, and myeloid differentiation of human induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8889-8894.	7.1	34
230	Chemotherapy-free conditioning: one step closer. Blood, 2014, 124, 838-840.	1.4	3
231	Accuracy of the Interpretation of Chest Radiographs for the Diagnosis of Paediatric Pneumonia. PLoS ONE, 2014, 9, e106051.	2.5	72
232	Health Related Quality of Life and Emotional Health in Children with Chronic Granulomatous Disease: A Comparison of Those Managed Conservatively with Those That Have Undergone Haematopoietic Stem Cell Transplant. Journal of Clinical Immunology, 2013, 33, 8-13.	3.8	74
233	Haploidentical hematopoietic stem cell transplantation can lead to viral clearance in severe combined immunodeficiency. Journal of Allergy and Clinical Immunology, 2013, 131, 1705-1708.e1.	2.9	6
234	Clinical outcome in children with chronic granulomatous disease managed conservatively or with hematopoietic stem cell transplantation. Journal of Allergy and Clinical Immunology, 2013, 132, 1150-1155.	2.9	120

#	Article	IF	CITATIONS
235	Clinical Manifestations of Disease in X-Linked Carriers of Chronic Granulomatous Disease. Journal of Clinical Immunology, 2013, 33, 1276-1284.	3.8	65
236	Epstein-Barr virus–independent diffuse large B-cell lymphoma in DNA ligase 4 deficiency. Journal of Allergy and Clinical Immunology, 2013, 131, 1237-1239.e1.	2.9	16
237	Immunological features of 22q11 deletion syndrome. Current Opinion in Pediatrics, 2013, 25, 730-735.	2.0	9
238	Advances in hematopoietic stem cell transplantation for primary immunodeficiency. Expert Review of Clinical Immunology, 2013, 9, 991-999.	3.0	25
239	Outcome Of Unrelated Umbilical Cord Blood Transplantation For Children With Osteopetrosis: An Eurocord and Inborn Errors Working Party (IEWP)-EBMT Study. Blood, 2013, 122, 2100-2100.	1.4	2
240	Outcome of hematopoietic stem cell transplantation for adenosine deaminase–deficient severe combined immunodeficiency. Blood, 2012, 120, 3615-3624.	1.4	151
241	Transplantation in patients with SCID: mismatched related stem cells or unrelated cord blood?. Blood, 2012, 119, 2949-2955.	1.4	106
242	Outcome of children requiring intensive care following haematopoietic SCT for primary immunodeficiency and other non-malignant disorders. Bone Marrow Transplantation, 2012, 47, 40-45.	2.4	25
243	Immunological aspects of 22q11.2 deletion syndrome. Cellular and Molecular Life Sciences, 2012, 69, 17-27.	5.4	95
244	Neonatal infection. , 2012, , 993-1064.		0
245	Polymorphous lymphoproliferative disorder with Hodgkin-like features in common γ-chain–deficient severe combined immunodeficiency. Journal of Allergy and Clinical Immunology, 2011, 127, 533-535.	2 0	16
		2.7	
246	Treosulfan-based conditioning regimens for hematopoietic stem cell transplantation in children with primary immunodeficiency: United Kingdom experience. Blood, 2011, 117, 4367-4375.	1.4	133
246 247	Treosulfan-based conditioning regimens for hematopoietic stem cell transplantation in children with primary immunodeficiency: United Kingdom experience. Blood, 2011, 117, 4367-4375. Neonatal diagnosis of severe combined immunodeficiency leads to significantly improved survival outcome: the case for newborn screening. Blood, 2011, 117, 3243-3246.	1.4	133 213
246 247 248	Treosulfan-based conditioning regimens for hematopoietic stem cell transplantation in children with primary immunodeficiency: United Kingdom experience. Blood, 2011, 117, 4367-4375. Neonatal diagnosis of severe combined immunodeficiency leads to significantly improved survival outcome: the case for newborn screening. Blood, 2011, 117, 3243-3246. X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood, 2011, 117, 53-62.	1.4 1.4 1.4	133 213 268
246 247 248 249	Treosulfan-based conditioning regimens for hematopoietic stem cell transplantation in children with primary immunodeficiency: United Kingdom experience. Blood, 2011, 117, 4367-4375. Neonatal diagnosis of severe combined immunodeficiency leads to significantly improved survival outcome: the case for newborn screening. Blood, 2011, 117, 3243-3246. X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood, 2011, 117, 53-62. Effect of Serotherapy dose on Immunoreconstitution Following Umbilical Cord Stem Cell Transplant for Primary Immunodeficiency. Pediatric Research, 2011, 70, 463-463.	1.4 1.4 1.4 2.3	133 213 268 0
246 247 248 249 250	Treosulfan-based conditioning regimens for hematopoietic stem cell transplantation in children with primary immunodeficiency: United Kingdom experience. Blood, 2011, 117, 4367-4375.Neonatal diagnosis of severe combined immunodeficiency leads to significantly improved survival outcome: the case for newborn screening. Blood, 2011, 117, 3243-3246.X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood, 2011, 117, 53-62.Effect of Serotherapy dose on Immunoreconstitution Following Umbilical Cord Stem Cell Transplant for Primary Immunodeficiency. Pediatric Research, 2011, 70, 463-463.Flow Cytometric Analysis of TCR Vl² Repertoire in Patients with 22q11.2 Deletion Syndrome. Scandinavian Journal of Immunology, 2011, 73, 577-585.	1.4 1.4 1.4 2.3 2.7	133 213 268 0 21
246 247 248 249 250 251	Treosulfan-based conditioning regimens for hematopoietic stem cell transplantation in children with primary immunodeficiency: United Kingdom experience. Blood, 2011, 117, 4367-4375.Neonatal diagnosis of severe combined immunodeficiency leads to significantly improved survival outcome: the case for newborn screening. Blood, 2011, 117, 3243-3246.X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood, 2011, 117, 53-62.Effect of Serotherapy dose on Immunoreconstitution Following Umbilical Cord Stem Cell Transplant for Primary Immunodeficiency. Pediatric Research, 2011, 70, 463-463.Flow Cytometric Analysis of TCR Vβ Repertoire in Patients with 22q11.2 Deletion Syndrome. Scandinavian Journal of Immunology, 2011, 73, 577-585.Guidelines on the use of irradiated blood components prepared by the British Committee for Standards in Haematology blood transfusion task force. British Journal of Haematology, 2011, 152, 35-51.	1.4 1.4 1.4 2.3 2.7 2.5	133 213 268 0 21

#	Article	IF	CITATIONS
253	Mutations in ZBTB24 Are Associated with Immunodeficiency, Centromeric Instability, and Facial Anomalies Syndrome Type 2. American Journal of Human Genetics, 2011, 88, 796-804.	6.2	158
254	IL-21 is the primary common \hat{I}^3 chain-binding cytokine required for human B-cell differentiation in vivo. Blood, 2011, 118, 6824-6835.	1.4	132
255	Clinical and immunologic outcome of patients with cartilage hair hypoplasia after hematopoietic stem cell transplantation. Blood, 2010, 116, 27-35.	1.4	50
256	Multicenter survey on the outcome of transplantation of hematopoietic cells in patients with the complete form of DiGeorge anomaly. Blood, 2010, 116, 2229-2236.	1.4	72
257	Successful SCT for Nijmegen breakage syndrome. Bone Marrow Transplantation, 2010, 45, 622-626.	2.4	57
258	Expansion of immunoglobulin-secreting cells and defects in B cell tolerance in <i>Rag</i> -dependent immunodeficiency. Journal of Experimental Medicine, 2010, 207, 1541-1554.	8.5	90
259	Primary immunodeficiencies associated with DNA-repair disorders. Expert Reviews in Molecular Medicine, 2010, 12, e9.	3.9	39
260	Association between hypoparathyroidism and defective T cell immunity in 22q11.2 deletion syndrome. Journal of Clinical Pathology, 2010, 63, 151-155.	2.0	18
261	Mutations in STAT3 and diagnostic guidelines for hyper-IgE syndrome. Journal of Allergy and Clinical Immunology, 2010, 125, 424-432.e8.	2.9	247
262	Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: Entering a new century, do we do better?. Journal of Allergy and Clinical Immunology, 2010, 126, 602-610.e11.	2.9	385
263	Primary Immunodeficiency Syndromes. Advances in Experimental Medicine and Biology, 2010, 685, 146-165.	1.6	9
264	Unrelated donor and HLAâ€identical sibling haematopoietic stem cell transplantation cure chronic granulomatous disease with good longâ€term outcome and growth. British Journal of Haematology, 2009, 145, 73-83.	2.5	121
265	Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. Journal of Allergy and Clinical Immunology, 2009, 124, 1289-1302.e4.	2.9	453
266	Haemopoietic stem-cell transplantation with antibody-based minimal-intensity conditioning: a phase 1/2 study. Lancet, The, 2009, 374, 912-920.	13.7	103
267	New Findings in Primary Immunodeficiency. Advances in Experimental Medicine and Biology, 2009, 634, 79-93.	1.6	0
268	Comparison of Outcomes of Mismatched Related Stem Cell and Unrelated Cord Blood Transplants in Children with Severe T-Cell Deficiencies Blood, 2009, 114, 664-664.	1.4	1
269	T cell receptor $\hat{V^2}$ repertoire of T lymphocytes and T regulatory cells by flow cytometric analysis in healthy children. Clinical and Experimental Immunology, 2008, 151, 190-198.	2.6	17
270	Clinical Immunology Review Series: An approach to the patient with recurrent infections in childhood. Clinical and Experimental Immunology, 2008, 152, 389-396.	2.6	70

#	Article	IF	CITATIONS
271	Special Article: Chronic granulomatous disease in the United Kingdom and Ireland: a comprehensive national patient-based registry. Clinical and Experimental Immunology, 2008, 152, 211-218.	2.6	207
272	Mutations in <i>CHD7</i> in patients with CHARGE syndrome cause T–B + natural killer cell + severe combined immune deficiency and may cause Omenn-like syndrome. Clinical and Experimental Immunology, 2008, 153, 75-80.	2.6	110
273	Long-term immune reconstitution after anti-CD52–treated or anti-CD34–treated hematopoietic stem cell transplantation for severe T-lymphocyte immunodeficiency. Journal of Allergy and Clinical Immunology, 2008, 121, 361-367.	2.9	50
274	Immunologic defects in 22q11.2 deletion syndrome. Journal of Allergy and Clinical Immunology, 2008, 122, 362-367.e4.	2.9	74
275	Advances in Hematopoietic Stem Cell Transplantation for Primary Immunodeficiency. Immunology and Allergy Clinics of North America, 2008, 28, 439-456.	1.9	18
276	A Regulatory Role for NBS1 in Strand-Specific Mutagenesis during Somatic Hypermutation. PLoS ONE, 2008, 3, e2482.	2.5	14
277	Hematopoietic Stem Cell Transplantation Corrects the Immunologic Abnormalities Associated With Immunodeficiency–Centromeric Instability–Facial Dysmorphism Syndrome. Pediatrics, 2007, 120, e1341-e1344.	2.1	40
278	Outcome of Hematopoietic Stem Cell Transplantation in Severe Combined Immune Deficiency With Central Nervous System Viral Infection. Pediatric Infectious Disease Journal, 2007, 26, 129-133.	2.0	14
279	Cord blood stem cell transplantation in primary immune deficiencies. Current Opinion in Allergy and Clinical Immunology, 2007, 7, 528-534.	2.3	23
280	Quantitative Assessment of Mixed Chimerism in Allogeneic Stem Cell Transplant Patients. Journal of Pediatric Hematology/Oncology, 2007, 29, 428-431.	0.6	6
281	Value of bronchoalveolar lavage before haematopoietic stem cell transplantation for primary immunodeficiency or autoimmune diseases. Bone Marrow Transplantation, 2007, 40, 529-533.	2.4	8
282	Immunodeficiency and Autoimmunity in 22q11.2 Deletion Syndrome. Scandinavian Journal of Immunology, 2007, 66, 1-7.	2.7	103
283	GvHD-associated cytokine polymorphisms do not associate with Omenn syndrome rather than Tâ^'Bâ^' SCID in patients with defects in RAG genes. Clinical Immunology, 2007, 124, 165-169.	3.2	9
284	Umbilical cord stem cell transplantation for primary immunodeficiencies. Expert Opinion on Biological Therapy, 2006, 6, 555-565.	3.1	30
285	Use of two unrelated umbilical cord stem cell units in stem cell transplantation for Wiskott–Aldrich syndrome. Pediatric Blood and Cancer, 2006, 47, 332-334.	1.5	16
286	Radiation-induced delayed cell death in a hypomorphic Artemis cell line. Human Molecular Genetics, 2006, 15, 1303-1311.	2.9	35
287	Primary immunodeficiency syndromes associated with defective DNA double-strand break repair. British Medical Bulletin, 2006, 77-78, 71-85.	6.9	49
288	Bone Marrow Transplantation for Nijmegan Breakage Syndrome. Journal of Pediatric Hematology/Oncology, 2005, 27, 239.	0.6	17

#	Article	IF	CITATIONS
289	Outcome of boost haemopoietic stem cell transplant for decreased donor chimerism or graft dysfunction in primary immunodeficiency. Bone Marrow Transplantation, 2005, 35, 683-689.	2.4	29
290	Single centre experience of umbilical cord stem cell transplantation for primary immunodeficiency. Bone Marrow Transplantation, 2005, 36, 295-299.	2.4	78
291	Impact of DNA ligase IV on nonhomologous end joining pathways during class switch recombination in human cells. Journal of Experimental Medicine, 2005, 201, 189-194.	8.5	131
292	Omenn's syndrome occurring in patients without mutations in recombination activating genes. Clinical Immunology, 2005, 116, 246-256.	3.2	28
293	Thyroid dysfunction after bone marrow transplantation for primary immunodeficiency without the use of total body irradiation in conditioning. Bone Marrow Transplantation, 2004, 33, 949-953.	2.4	64
294	The clinical and biological overlap between Nijmegen Breakage Syndrome and Fanconi anemia. Clinical Immunology, 2004, 113, 214-219.	3.2	51
295	An overview of three new disorders associated with genetic instability: LIG4 syndrome, RS-SCID and ATR-Seckel syndrome. DNA Repair, 2004, 3, 1227-1235.	2.8	174
296	A Pathway of Double-Strand Break Rejoining Dependent upon ATM, Artemis, and Proteins Locating to γ-H2AX Foci. Molecular Cell, 2004, 16, 715-724.	9.7	790
297	The Immunocompromised Host: The Patient with Recurrent Infection. Advances in Experimental Medicine and Biology, 2004, 549, 109-117.	1.6	2
298	Unravelling the web of DNA repair disorders. Clinical and Experimental Immunology, 2003, 134, 385-387.	2.6	0
299	Successful umbilical cord blood stem cell transplantation for chronic granulomatous disease. Bone Marrow Transplantation, 2003, 31, 403-405.	2.4	37
300	Treatment of CD40 ligand deficiency by hematopoietic stem cell transplantation: a survey of the European experience, 1993-2002. Blood, 2003, 103, 1152-1157.	1.4	116
301	Antibody deficiency and autoimmunity in 22q11.2 deletion syndrome. Archives of Disease in Childhood, 2002, 86, 422-425.	1.9	157
302	CAMPATH-1M T-cell depleted BMT for SCID: long-term follow-up of 19 children treated 1987–98 in a single center. Cytotherapy, 2001, 3, 221-232.	0.7	25
303	DNA Ligase IV Mutations Identified in Patients Exhibiting Developmental Delay and Immunodeficiency. Molecular Cell, 2001, 8, 1175-1185.	9.7	497
304	Lymphocyte subset populations in children with polysaccharide antibody deficiency following cardiac transplantation. Journal of Clinical Immunology, 2001, 21, 37-42.	3.8	5
305	Characterization of the impaired antipneumococcal polysacharide antibody production in immunosuppressed pediatric patients following cardiac transplantation. Journal of Clinical Immunology, 2001, 21, 43-50.	3.8	6
306	Neonatal bone marrow transplantation for severe combined immunodeficiency. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2001, 85, 110F-113.	2.8	26

#	Article	IF	CITATIONS
307	Diagnosis of severe combined immunodeficiency. Journal of Clinical Pathology, 2001, 54, 191-195.	2.0	35
308	Immunodeficiency associated with DNA repair defects. Clinical and Experimental Immunology, 2000, 121, 1-7.	2.6	57
309	Bone marrow transplantation does not correct the hyper IgE syndrome. Bone Marrow Transplantation, 2000, 25, 1303-1305.	2.4	89
310	Evidence for Continuous Basal Generation of Gc-MAF: Absence in Infantile Osteopetrosis and Restoration After Bone Marrow Transplant. Blood, 1999, 93, 4026-4027.	1.4	10
311	Effect of immunosuppression after cardiac transplantation in early childhood on antibody response to polysaccharide antigen. Lancet, The, 1998, 351, 1778-1781.	13.7	43