Tatiana G Levitskaia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5371332/publications.pdf Version: 2024-02-01

TATIANIA C. LEVITSKAIA

#	Article	lF	CITATIONS
1	Time dependent zero valent iron oxidation and the reductive removal of pertechnetate at variable pH. Journal of Hazardous Materials, 2022, 424, 127400.	12.4	5
2	Removal of iodine (lâ^' and IO3â^') from aqueous solutions using CoAl and NiAl layered double hydroxides. Chemical Engineering Journal, 2022, 430, 132788.	12.7	9
3	A Review of Bismuth(III)-Based Materials for Remediation of Contaminated Sites. ACS Earth and Space Chemistry, 2022, 6, 883-908.	2.7	6
4	Simultaneous removal of cesium and iodate using prussian blue functionalized CoCr layered double hydroxide (PB-LDH). Journal of Environmental Chemical Engineering, 2022, 10, 107477.	6.7	12
5	Kinetics and mechanism of rhenium-ethylenediaminetetraacetic acid (Re(IV)-EDTA) complex degradation; For 99Tc-EDTA degradation in the natural environment. Environmental Technology and Innovation, 2022, 27, 102492.	6.1	0
6	Removable coatings: Thermal stability and decontamination of steel surfaces from 241Am. Chemosphere, 2022, 301, 134680.	8.2	0
7	Elemental characterization of crystalline silicotitanate following Hanford tank waste processing. Separation Science and Technology, 2021, 56, 1457-1465.	2.5	8
8	Elemental iron: reduction of pertechnetate in the presence of silica and periodicity of precipitated nano-structures. Environmental Science: Nano, 2021, 8, 97-109.	4.3	2
9	Simultaneous immobilization of aqueous co-contaminants using a bismuth layered material. Journal of Environmental Radioactivity, 2021, 237, 106711.	1.7	5
10	lodine immobilization by materials through sorption and redox-driven processes: A literature review. Science of the Total Environment, 2020, 716, 132820.	8.0	59
11	Technetium immobilization by materials through sorption and redox-driven processes: A literature review. Science of the Total Environment, 2020, 716, 132849.	8.0	19
12	Nanostructured MgFe and CoCr layered double hydroxides for removal and sequestration of iodine anions. Chemical Engineering Journal, 2020, 380, 122408.	12.7	47
13	Evaluation of materials for iodine and technetium immobilization through sorption and redox-driven processes. Science of the Total Environment, 2020, 716, 136167.	8.0	16
14	Characterization of spent Purolite A530E resin with implications for long-term radioactive contaminant removal. Journal of Environmental Chemical Engineering, 2020, 8, 104155.	6.7	8
15	Spontaneous redox continuum reveals sequestered technetium clusters and retarded mineral transformation of iron. Communications Chemistry, 2020, 3, .	4.5	8
16	Identification and Quantification of Technetium Species in Hanford Waste Tank AN-102. Analytical Chemistry, 2020, 92, 13961-13970.	6.5	14
17	Mechanisms of Plutonium Redox Reactions in Nitric Acid Solutions. Inorganic Chemistry, 2020, 59, 6826-6838.	4.0	7
18	Hybrid Sorbents for ¹²⁹ I Capture from Contaminated Groundwater. ACS Applied Materials & Interfaces, 2020, 12, 26113-26126.	8.0	19

TATIANA G LEVITSKAIA

#	Article	IF	CITATIONS
19	Evolution of Acid-Dependent Am ³⁺ and Eu ³⁺ Organic Coordination Environment: Effects on the Extraction Efficiency. Inorganic Chemistry, 2020, 59, 4453-4467.	4.0	19
20	Impact of zero valent iron aging on reductive removal of technetium-99. Journal of Environmental Chemical Engineering, 2020, 8, 103767.	6.7	11
21	Overcoming Oxidation State-Dependent Spectral Interferences: Online Monitoring of U(VI) Reduction to U(IV) via Raman and UV–vis Spectroscopy. Industrial & Engineering Chemistry Research, 2020, 59, 8894-8901.	3.7	13
22	Comparative analysis of ZVI materials for reductive separation of 99Tc(VII) from aqueous waste streams. Journal of Hazardous Materials, 2019, 380, 120836.	12.4	25
23	Redox and volatility of Tc(CO)3+ compounds in waste glass melting. Journal of Nuclear Materials, 2019, 515, 199-205.	2.7	6
24	The abiotic reductive removal and subsequent incorporation of Tc(<scp>iv</scp>) into iron oxides: a frontier review. Environmental Science: Nano, 2019, 6, 3492-3500.	4.3	8
25	Inorganic Ba–Sn nanocomposite materials for sulfate sequestration from complex aqueous solutions. Environmental Science: Nano, 2018, 5, 890-903.	4.3	5
26	Effect of HEH[EHP] impurities on the ALSEP solvent extraction process. Solvent Extraction and Ion Exchange, 2018, 36, 22-40.	2.0	9
27	Surprising formation of quasi-stable Tc(<scp>vi</scp>) in high ionic strength alkaline media. Inorganic Chemistry Frontiers, 2018, 5, 2081-2091.	6.0	15
28	Extraction Behavior of Ln(III) Ions by T2EHDGA/ <i>n</i> -Dodecane from Nitric Acid and Sodium Nitrate Solutions. Solvent Extraction and Ion Exchange, 2018, 36, 331-346.	2.0	21
29	Spectroscopic Characterization of Aqua [<i>fac</i> -Tc(CO) ₃] ⁺ Complexes at High Ionic Strength. Inorganic Chemistry, 2018, 57, 6903-6912.	4.0	10
30	Mechanisms of neptunium redox reactions in nitric acid solutions. Inorganic Chemistry Frontiers, 2017, 4, 581-594.	6.0	39
31	An Advanced TALSPEAK Concept for Separating Minor Actinides. Part 1. Process Optimization and Flowsheet Development. Solvent Extraction and Ion Exchange, 2017, 35, 377-395.	2.0	26
32	Nitric Acid and Water Extraction by T2EHDGA in <i>n</i> -Dodecane. Solvent Extraction and Ion Exchange, 2017, 35, 586-603.	2.0	31
33	Spectroelectrochemistry of EuCl ₃ in Four Molten Salt Eutectics; 3â€LiClâ^'NaCl, 3â€LiClâ^'2â€ LiClâ~'RbCl, and 3â€LiClâ^'2â€CsCl; at 873â€K. Electroanalysis, 2016, 28, 2158-2165.	KCl. 2:9	16
34	Inorganic tin aluminophosphate nanocomposite for reductive separation of pertechnetate. Environmental Science: Nano, 2016, 3, 1003-1013.	4.3	24
35	Theoretical Modeling of ⁹⁹ Tc NMR Chemical Shifts. Inorganic Chemistry, 2016, 55, 8341-8347.	4.0	10
36	RedOx-controlled sorption of iodine anions by hydrotalcite composites. RSC Advances, 2016, 6, 76042-76055.	3.6	23

#	Article	IF	CITATIONS
37	Development of Online Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes. Analytical Chemistry, 2015, 87, 5139-5147.	6.5	31
38	Highly Selective Colorimetric and Luminescence Response of a Square-Planar Platinum(II) Terpyridyl Complex to Aqueous TcO ₄ [–] . Inorganic Chemistry, 2015, 54, 9914-9923.	4.0	39
39	Aqueous Binary Lanthanide(III) Nitrate Ln(NO ₃ 33 Electrolytes Revisited: Extended Pitzer and Bromley Treatments. Journal of Chemical & Engineering Data, 2015, 60, 2974-2988.	1.9	20