Tobias Fey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5371199/publications.pdf

Version: 2024-02-01

236925 182427 2,990 106 25 51 citations h-index g-index papers 111 111 111 3784 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Fatigue Life Optimized Layer Architecture of Ultrafineâ€Grained Al–Ti Laminates Under Bending Stresses. Advanced Engineering Materials, 2022, 24, .	3.5	2
2	Deformation Behavior of 2D Composite Cellular Lattices of Ceramic Building Blocks and Epoxy Resin. Advanced Engineering Materials, 2022, 24, .	3.5	3
3	Microchanneled biomorphous Al2O3 coated with TiO2 aerogel for photocatalytic reduction of 4-nitrophenol. Ceramics International, 2022, 48, 15946-15950.	4.8	6
4	Fabrication and characterization of porous mullite ceramics derived from fluoride-assisted Metakaolin-Al(OH)3 annealing for filtration applications. Open Ceramics, 2022, 9, 100240.	2.0	9
5	Advanced Estimation of Compressive Strength and Fracture Behavior in Ceramic Honeycombs by Polarimetry Measurements of Similar Epoxy Resin Honeycombs. Materials, 2022, 15, 2361.	2.9	4
6	Strategies to Control In Vitro Degradation of Mg Scaffolds Processed by Powder Metallurgy. Metals, 2022, 12, 566.	2.3	0
7	Microsurgical Transplantation of Pedicled Muscles in an Isolation Chamber—A Novel Approach to Engineering Muscle Constructs via Perfusion-Decellularization. Journal of Personalized Medicine, 2022, 12, 442.	2.5	4
8	Aligned Porous Structure of (Ba,Ca)(Ti,Zr)O ₃ Piezoelectric Ceramics for Enhanced Catalytic Activity. Physica Status Solidi (B): Basic Research, 2022, 259, .	1.5	3
9	Additive manufactured replica foams. Open Ceramics, 2022, 10, 100258.	2.0	2
10	Electromechanical properties of paperâ€derived potassium sodium niobate piezoelectric ceramics. Journal of the American Ceramic Society, 2022, 105, 6755-6764.	3.8	5
11	Human Umbilical Vein Endothelial Cell Support Bone Formation of Adipose-Derived Stem Cell-Loaded and 3D-Printed Osteogenic Matrices in the Arteriovenous Loop Model. Tissue Engineering - Part A, 2021, 27, 413-423.	3.1	18
12	Open-Cellular Alumina Foams with Hierarchical Strut Porosity by Ice Templating: A Thickening Agent Study. Materials, 2021, 14, 1060.	2.9	7
13	Porous Alumina Ceramics with Multimodal Pore Size Distributions. Materials, 2021, 14, 3294.	2.9	18
14	Enhanced vascularization and de novo tissue formation in hydrogels made of engineered RGD-tagged spider silk proteins in the arteriovenous loop model. Biofabrication, 2021, 13, 045003.	7.1	25
15	Porous TaCx ISOL target materials from mould-casted Ta4AlC3. Journal of the European Ceramic Society, 2021, 41, 3947-3959.	5.7	3
16	Free Transplantation of a Tissue Engineered Bone Graft into an Irradiated, Critical-Size Femoral Defect in Rats. Cells, 2021, 10, 2256.	4.1	3
17	Lead-free piezoelectric (Ba,Ca)(Ti,Zr)O3 scaffolds for enhanced antibacterial property. Materials Letters, 2021, 297, 129969.	2.6	13
18	Determination of the representative volume-of-interest (REVOI) in ceramic replica foams. Open Ceramics, 2021, 7, 100154.	2.0	0

#	Article	IF	Citations
19	Influence of $\hat{A}\mu$ CT scanning resolution and volume on FEM-simulation of periodic 3D-printed porous ceramics. Materials Letters, 2021, 303, 130529.	2.6	2
20	Porous Functional Graded Bioceramics with Integrated Interface Textures. Ceramics, 2021, 4, 681-695.	2.6	3
21	Vegetable hierarchical structures as template for bone regeneration: New bioâ€ceramization process for the development of a bone scaffold applied to an experimental sheep model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 600-611.	3.4	10
22	Hierarchical Surface Texturing of Hydroxyapatite Ceramics: Influence on the Adhesive Bonding Strength of Polymeric Polycaprolactone. Journal of Functional Biomaterials, 2020, 11, 73.	4.4	15
23	Shape Matters: Crystal Morphology and Surface Topography Alter Bioactivity of Bioceramics in Simulated Body Fluid. Advanced Engineering Materials, 2020, 22, 2000044.	3.5	3
24	Temperature―and Stressâ€Dependent Electromechanical Response of Porous Pb(Zr,Ti)O 3. Advanced Engineering Materials, 2020, 22, 2000389.	3.5	10
25	Phase Evolution, Filler-Matrix Interactions, and Piezoelectric Properties in Lead Zirconate Titanate (PZT)-Filled Polymer-Derived Ceramics (PDCs). Materials, 2020, 13, 1520.	2.9	5
26	Injection Molding of 3-3 Hydroxyapatite Composites. Materials, 2020, 13, 1907.	2.9	8
27	Topological interlocking and damage mechanisms in periodic Ti2AlC-Al building block composites. Journal of the European Ceramic Society, 2019, 39, 2003-2009.	5.7	9
28	Secondary Pyroelectric Effect and Figure of Merit of Ferroelectric O–3 Composites. Advanced Engineering Materials, 2019, 21, 1900241.	3 . 5	5
29	Influence of Porosity Orientation on Physical Properties in Porous PZT Ceramics. Advanced Engineering Materials, 2019, 21, 1900390.	3.5	9
30	Celebrating the 65 th Birthday of Professor Peter Greil. Advanced Engineering Materials, 2019, 21, 1900484.	3. 5	0
31	Direct ink writing of three dimensional Ti2AlC porous structures. Additive Manufacturing, 2019, 28, 365-372.	3.0	28
32	Hierarchicalâ€Porous Ceramic Foams by a Combination of Replica and Freeze Technique. Advanced Engineering Materials, 2019, 21, 1801362.	3. 5	21
33	Intrinsic Vascularization of Recombinant eADF4(C16) Spider Silk Matrices in the Arteriovenous Loop Model. Tissue Engineering - Part A, 2019, 25, 1504-1513.	3.1	29
34	Encapsulation of Reactive Ti 2 AlC and Nb 2 AlC Particles via a Boehmite Precipitation Route. Advanced Engineering Materials, 2019, 21, 1900048.	3. 5	4
35	Modular Lattice Constructs for Biological Joint Resurfacing. Tissue Engineering - Part A, 2019, 25, 1053-1062.	3.1	3
36	Porous polysilazane-derived ceramic structures generated through photopolymerization-assisted solidification templating. Journal of the European Ceramic Society, 2019, 39, 838-845.	5.7	26

#	Article	IF	CITATIONS
37	Automated 3D assembly of periodic aluminaâ€epoxy composite structures. Journal of the American Ceramic Society, 2018, 101, 3864-3873.	3.8	14
38	Sol-gel infiltration of complex cellular indirect 3D printed alumina. Journal of the European Ceramic Society, 2018, 38, 3603-3609.	5.7	24
39	Microstructure, thermal conductivity and simulation of elastic modulus of MAX-phase (Ti2AlC) gel-cast foams. Journal of the European Ceramic Society, 2018, 38, 3424-3432.	5.7	25
40	Encapsulation of Mesenchymal Stem Cells Improves Vascularization of Alginate-Based Scaffolds. Tissue Engineering - Part A, 2018, 24, 1320-1331.	3.1	23
41	Paperâ€Derived Ferroelectric Ceramics: A Feasibility Study. Advanced Engineering Materials, 2018, 20, 1800052.	3.5	7
42	Resistance curves of short-fiber reinforced methacrylate-based biomedical composites. Engineering Fracture Mechanics, 2018, 190, 146-158.	4.3	13
43	Modular ceramic scaffolds for individual implants. Acta Biomaterialia, 2018, 80, 390-400.	8.3	28
44	Dextran-coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging: evaluation of size-dependent imaging properties, storage stability and safety. International Journal of Nanomedicine, 2018, Volume 13, 1899-1915.	6.7	105
45	Nb2AlC-particle induced accelerated crack healing in ZrO2–matrix composites. Ceramics International, 2018, 44, 19352-19361.	4.8	11
46	Al2O3/Cu-O composites fabricated by pressureless infiltration of paper-derived Al2O3 porous preforms. Ceramics International, 2018, 44, 20835-20840.	4.8	20
47	Thermochemical calculations of the oxidation behavior of Nb2AlC MAX phase in ZrO2–matrix composites. Ceramics International, 2018, 44, 15747-15753.	4.8	1
48	Robocasting of carbon-alumina core-shell composites using co-extrusion. Rapid Prototyping Journal, 2017, 23, 423-433.	3.2	18
49	Micro- and macroscopic design of alumina ceramics by robocasting. Journal of the European Ceramic Society, 2017, 37, 3115-3124.	5 . 7	41
50	Freezing kinetics of vacuum-induced surface directional freezing in a glass vial. Chemical Engineering Science, 2017, 167, 154-160.	3.8	7
51	Reticulated Replica Ceramic Foams: Processing, Functionalization, and Characterization. Advanced Engineering Materials, 2017, 19, 1700369.	3.5	71
52	One―or twoâ€dimensional channel structures and properties of piezoelectric composites via freezeâ€casting. Journal of the American Ceramic Society, 2017, 100, 5400-5408.	3.8	14
53	Influence of Different Irradiation Protocols on Vascularization and Bone Formation Parameters in Rat Femora. Tissue Engineering - Part C: Methods, 2017, 23, 583-591.	2.1	5
54	Influence of Cell Size on Mechanical and Piezoelectric Properties of PZT and LNKN Ceramic Foams. Advanced Engineering Materials, 2017, 19, 1700420.	3. 5	25

#	Article	IF	Citations
55	Porous piezoelectric ceramics with 3-3-connectivity fabricated by impregnation of cellulose paper structures. Materials Letters, 2017, 206, 158-161.	2.6	7
56	Enhancement of the Carbothermal Reduction of Hafnium Oxide by Silicon. Advanced Engineering Materials, 2017, 19, 1600377.	3.5	1
57	Biomorphous Silicon Carbide as Novel Loop Heat Pipe Wicks. Advanced Engineering Materials, 2017, 19, 1600379.	3.5	9
58	Tortuosity of Aligned Channels in Alumina Membranes Produced by Vacuum-Induced Surface Directional Freezing. Materials, 2017, 10, 409.	2.9	4
59	Vacuum-Induced Surface Freezing to Produce Monoliths of Aligned Porous Alumina. Materials, 2016, 9, 983.	2.9	9
60	Thermal and Electrical Conductivity of Amorphous and Graphitized Carbideâ€Derived Carbon Monoliths. Chemical Engineering and Technology, 2016, 39, 1121-1129.	1.5	12
61	Adsorption of Nickel Ions on Oxygenâ€Functionalized Carbons. Chemical Engineering and Technology, 2016, 39, 715-722.	1.5	6
62	Adjustment of the Optical Properties of Dispersion Derived Carbon Nanotube Coatings. Advanced Engineering Materials, 2016, 18, 624-631.	3.5	2
63	Evaluation of in vivo angiogenetic effects of copper doped bioactive glass scaffolds in the AV loop model. Biomedical Glasses, 2016, 2, .	2.4	9
64	Bioactivity and Mechanical Stability of 45S5 Bioactive Glass Scaffolds Based on Natural Marine Sponges. Annals of Biomedical Engineering, 2016, 44, 1881-1893.	2.5	35
65	Structural commonalities and deviations in the hierarchical organization of crossed-lamellar shells: A case study on the shell of the bivalve <i>Glycymeris glycymeris</i> . Journal of Materials Research, 2016, 31, 536-546.	2.6	13
66	Laser pyrolysis of an organosilazane-based glass/ZrO2 composite coating system. Materials and Design, 2016, 109, 644-651.	7.0	18
67	Mechanical and electrical strain response of a piezoelectric auxetic PZT lattice structure. Smart Materials and Structures, 2016, 25, 015017.	3.5	40
68	Thermal conductivity and microstructure characterisation of lightweight alumina and alumina–mullite ceramics. Journal of the European Ceramic Society, 2016, 36, 1469-1477.	5.7	41
69	Enhancement of the antimicrobial properties of orthorhombic molybdenum trioxide by thermal induced fracturing of the hydrates. Materials Science and Engineering C, 2016, 58, 1064-1070.	7.3	20
70	Development and characterization of lithium-releasing silicate bioactive glasses and their scaffolds for bone repair. Journal of Non-Crystalline Solids, 2016, 432, 65-72.	3.1	63
71	Bulk-fill resin composites: Polymerization properties and extended light curing. Dental Materials, 2015, 31, 293-301.	3.5	216
72	Freeze gelated porous membranes for periodontal tissue regeneration. Acta Biomaterialia, 2015, 23, 317-328.	8.3	95

#	Article	IF	CITATIONS
73	Microstructural, mechanical and thermal characterization of alumina gel-cast foams manufactured with the use of agarose as gelling agent. Journal of Porous Materials, 2015, 22, 1305-1312.	2.6	25
74	Crack Healing in Ti ₂ Al _{0.5} Sn _{0.5} C–Al ₂ O ₃ Composites. Journal of the American Ceramic Society, 2015, 98, 1604-1610.	3.8	25
7 5	Ceramics for Sustainable Energy Technologies with a Focus on Polymer-Derived Ceramics. , 2014, , 501-533.		7
76	Hierarchically ordered foams derived from polysiloxanes with catalytically active coatings. Journal of the European Ceramic Society, 2014, 34, 1715-1725.	5.7	34
77	Additive Manufacturing of Ceramicâ€Based Materials. Advanced Engineering Materials, 2014, 16, 729-754.	3.5	610
78	Morphological zeta-potential variation of nanoporous anodic alumina layers and cell adherence. Acta Biomaterialia, 2014, 10, 968-974.	8.3	40
79	Cobalt-Releasing 1393 Bioactive Glass-Derived Scaffolds for Bone Tissue Engineering Applications. ACS Applied Materials & Engineering Applied & Engineering & Engineer	8.0	99
80	An advanced method to manufacture hierarchically structured carbide-derived carbon monoliths. Carbon, 2014, 70, 30-37.	10.3	15
81	Photoelastic Imaging of Residual Stress Distribution in Epoxy Interface Layers of Ceramics with Periodic Buildingâ€Block Structure. Advanced Engineering Materials, 2013, 15, 1099-1104.	3.5	7
82	Robocasting of alumina hollow filament lattice structures. Journal of the European Ceramic Society, 2013, 33, 3243-3248.	5.7	74
83	Evaluation of Angiogenesis of Bioactive Glass in the Arteriovenous Loop Model. Tissue Engineering - Part C: Methods, 2013, 19, 479-486.	2.1	77
84	Biomorphous Ceramics from Lignocellulosic Preforms. , 2013, , 527-555.		2
85	Oxidation Behavior of <scp>MAX</scp> Phase <scp><scp><fi><scp><fi>/scp></fi></scp><scp>Sid Solution. Journal of the American Ceramic Society, 2013, 96, 1359-1362.</scp></fi></scp></scp>	sc p.8 <th>> 53ub> <i>×</i></th>	> 53 ub> <i>×</i>
86	The pomelo peel and derived nanoscale-precision gradient silica foams. Bioinspired, Biomimetic and Nanobiomaterials, 2012, 1, 117-122.	0.9	11
87	Graded Cellular Ceramics from Continuous Foam Extrusion. Advanced Engineering Materials, 2012, 14, 1097-1103.	3.5	12
88	Extrusion Foaming of a Preceramic Silicone Resin with a Variety of Profiles and Morphologies. Advanced Engineering Materials, 2012, 14, 1110-1115.	3.5	15
89	Vibration Assisted Selfâ€Assembly Processing of Ceramicâ€Based Composites with Modular Metaâ€Structure. Journal of the American Ceramic Society, 2012, 95, 95-101.	3.8	14
90	Sintering of 3 <scp>D</scp> â€Printed Glass/ <scp>HA</scp> p Composites. Journal of the American Ceramic Society, 2012, 95, 3387-3393.	3.8	54

#	Article	IF	CITATIONS
91	Synthesis of Ti ₂ SnC MAX Phase by Mechanical Activation and Melt Infiltration. Advanced Engineering Materials, 2012, 14, 85-91.	3.5	11
92	Realisation of Large Cavities in Multilayer Ceramics by Cold Low Pressure Lamination and Their Characterisation by νCT. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2012, 2012, 000263-000268.	0.2	1
93	Fast production of monolithic carbide-derived carbons with secondary porosity produced by chlorination of carbides containing a free metal phase. Carbon, 2011, 49, 4359-4367.	10.3	24
94	Using Supercritical Carbon Dioxide for Physical Foaming of Advanced Polymer Materials. International Polymer Processing, 2011, 26, 437-443.	0.5	5
95	Processing of Ceramic Foams with Hierarchical Cell Structure. Advanced Engineering Materials, 2010, 12, 884-892.	3.5	20
96	Microstructure and properties of LZSA glass-ceramic foams. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 476, 89-97.	5.6	42
97	Microcellular Al2O3Ceramics from Wood for Filter Applications. Journal of the American Ceramic Society, 2008, 91, 852-859.	3.8	34
98	Preceramic Paperâ€Derived Ceramics. Journal of the American Ceramic Society, 2008, 91, 3477-3492.	3.8	94
99	Biomorphous Metal eramic omposites with High Coefficient of Friction. Advanced Engineering Materials, 2007, 9, 892-897.	3.5	3
100	Bioinspired Rattan-Derived SiSiC/Zeolite Monoliths: Preparation and Characterisation. Microporous and Mesoporous Materials, 2006, 90, 162-174.	4.4	53
101	Stress distribution in biomorphous SiC-ceramics under radial tensile loading. Journal of the European Ceramic Society, 2005, 25, 1015-1024.	5.7	14
102	Fabrication of Hydroxyapatite Ceramics with Interconnected Macro Porosity. Key Engineering Materials, 2005, 284-286, 277-280.	0.4	2
103	LZSA glass ceramic foams prepared by replication process. Advances in Applied Ceramics, 2005, 104, 22-29.	1.1	41
104	Effect of microstructure on the fracture behavior of biomorphous silicon carbide ceramics. Journal of the European Ceramic Society, 2002, 22, 2697-2707.	5.7	85
105	Deformation Behavior of 2D Composite Cellular Lattices of Ceramic Building Blocks and Epoxy Resin. Advanced Engineering Materials, 0, , 2100536.	3.5	2
106	Stress and Deformation Behavior of 2D Composite Cellular Actuator Structures of Ceramic Building Blocks and Epoxy Resins. Physica Status Solidi (B): Basic Research, 0, , 2100591.	1.5	1