Shu-Ping Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5371017/publications.pdf

Version: 2024-02-01

109321 175258 3,575 128 35 52 citations h-index g-index papers 128 128 128 4427 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Surface-state triggered solvatochromism of carbonized polymer dot and its two-photon luminescence. Nano Research, 2022, 15, 2567-2575.	10.4	15
2	Experimental aspects of surface-enhanced Raman scattering for biological applications., 2022,, 81-124.		1
3	Electrostimulus Associated PD-L1 Expression on Cell Membrane Revealed by Immune SERS Nanoprobes. Analyst, The, 2022, , .	3.5	2
4	Direct MYD88 ^{L265P} gene detection for diffuse large B-cell lymphoma (DLBCL) <i>via</i> a miniaturised CRISPR/dCas9-based sensing chip. Lab on A Chip, 2022, 22, 768-776.	6.0	5
5	Recent Advances in Spectroscopic Techniques for the Analysis of Microplastics in Food. Journal of Agricultural and Food Chemistry, 2022, 70, 1410-1422.	5.2	27
6	Gold Nanorod Vertical Array-Based Electrochemiluminescence Polarization Assay for Triple-Negative Breast Cancer Detection. Analytical Chemistry, 2022, 94, 1221-1229.	6. 5	17
7	Piezochromic Luminescence of Cyano Substituted E/Z Isomeric Derivatives: Different Responses to External Stimuli. Advanced Optical Materials, 2022, 10, .	7.3	8
8	Smart Tetraphenyletheneâ€Based Luminescent Metal–Organic Frameworks with Amideâ€Assisted Thermofluorochromics and Piezofluorochromics. Advanced Science, 2022, 9, e2200850.	11.2	31
9	Single-Cell VEGF Analysis by Fluorescence Imaging–Microfluidic Droplet Platform: An Immunosandwich Strategy on the Cell Surface. Analytical Chemistry, 2022, 94, 6591-6598.	6.5	8
10	MicroRNA-21 expression in single living cells revealed by fluorescence and SERS dual-response microfluidic droplet platform. Lab on A Chip, 2022, 22, 2165-2172.	6.0	12
11	Microfluidic Droplet-SERS Platform for Single-Cell Cytokine Analysis via a Cell Surface Bioconjugation Strategy. Analytical Chemistry, 2022, 94, 10375-10383.	6.5	15
12	SERS hydrogel pellets for highly repeatable and reliable detections of significant small biomolecules in complex samples without pretreatment. Sensors and Actuators B: Chemical, 2021, 327, 128943.	7.8	22
13	Polymorphism-based luminescence and morphology-dependent optical waveguide properties in 1 : 1 charge transfer cocrystals. Materials Chemistry Frontiers, 2021, 5, 1477-1485.	5. 9	17
14	Interparticle Spacing Effect among Quantum Dots with High-Pressure Regulation. Nanomaterials, 2021, 11, 325.	4.1	8
15	Piezochromic mechanism of organic crystals under hydrostatic pressure. Materials Chemistry Frontiers, 2021, 5, 2588-2606.	5. 9	26
16	DNA-Mediated Au–Au Dimer-Based Surface Plasmon Coupling Electrochemiluminescence Sensor for BRCA1 Gene Detection. Analytical Chemistry, 2021, 93, 3308-3314.	6.5	36
17	Surface-Doped Organic Charge Transfer Cocrystal Heterostructures and Their Variable Dual-Color Light Emission and Propagation. Crystal Growth and Design, 2021, 21, 2699-2710.	3.0	9
18	Single-Cell Oxidative Stress Events Revealed by a Renewable SERS Nanotip. ACS Sensors, 2021, 6, 1663-1670.	7.8	15

#	Article	IF	CITATIONS
19	Ultrafast Electron Transfer in Binary Nanoparticle Superlattices under High Pressure. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100066.	2.4	3
20	Ultrasensitive detection of trypsin in serum via nanochannel device. Analytical and Bioanalytical Chemistry, 2021, 413, 4939-4945.	3.7	7
21	Investigating Lysosomal Autophagy <i>via</i> Surface-Enhanced Raman Scattering Spectroscopy. Analytical Chemistry, 2021, 93, 13038-13044.	6.5	5
22	Metformin hydrochloride action on cell membrane N-cadherin expression and cell nucleus revealed by SERS nanoprobes. Talanta, 2021, 232, 122442.	5 . 5	3
23	Evolution of High Symmetry Points of Photonic Alumina Superlattices in a Lithography-Free Approach. ACS Applied Materials & Date: Act of the Ac	8.0	7
24	A carbonized polymer dot (CPD) nanosensor for trace water detection with a wide detection range. Dyes and Pigments, 2021, 196, 109805.	3.7	10
25	Recent progress of surface-enhanced Raman spectroscopy for subcellular compartment analysis. Theranostics, 2021, 11, 4872-4893.	10.0	29
26	Label-Free Analysis of Cell Membrane Proteins via Evanescent Field Excited Surface-Enhanced Raman Scattering. Journal of Physical Chemistry Letters, 2021, 12, 10720-10727.	4.6	2
27	Polarization-Resolved Electrochemiluminescence Sensor Based on the Surface Plasmon Coupling Effect of a Au Nanotriangle-Patterned Structure. Analytical Chemistry, 2021, 93, 15785-15793.	6.5	11
28	Mitochondria-targeting supra-carbon dots: Enhanced photothermal therapy selective to cancer cells and their hyperthermia molecular actions. Carbon, 2020, 156, 558-567.	10.3	65
29	A "simple―donor–acceptor AlEgen with multi-stimuli responsive behavior. Materials Horizons, 2020, 7, 135-142.	12.2	77
30	Morphologyâ€Dependent Luminescence and Optical Waveguide Property in Largeâ€Size Organic Charge Transfer Cocrystals with Anisotropic Spatial Distribution of Transition Dipole Moment. Advanced Optical Materials, 2020, 8, 1901280.	7.3	34
31	Structure-tuned and thermodynamically controlled mechanochromic self-recovery of AIE-active Au(<scp>i</scp>) complexes. Journal of Materials Chemistry C, 2020, 8, 894-899.	5.5	52
32	Intracellular pH-propelled assembly of smart carbon nanodots and selective photothermal therapy for cancer cells. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110724.	5.0	12
33	Target-triggered hot spot dispersion for cellular biothiol detection via background-free surface-enhanced Raman scattering tags. Biosensors and Bioelectronics, 2020, 151, 111957.	10.1	20
34	Novel halogen-bonded co-crystals and their unique luminescence property during 10ÂGPa compression-decompression cycle. Dyes and Pigments, 2020, 175, 108116.	3.7	7
35	Surface Plasmon Field-Enhanced Raman Scattering Based on Evanescent Field Excitation of Waveguide-Coupled Surface Plasmon Resonance Configuration. Journal of Physical Chemistry C, 2020, 124, 1640-1645.	3.1	11
36	Long-Range Surface Plasmon Resonance Configuration for Enhancing SERS with an Adjustable Refractive Index Sample Buffer to Maintain the Symmetry Condition. ACS Omega, 2020, 5, 32951-32958.	3.5	8

#	Article	IF	CITATIONS
37	Fast Activation and Tracing of Caspase-3 Involved Cell Apoptosis by Combined Electrostimulation and Smart Signal-Amplified SERS Nanoprobes. Analytical Chemistry, 2020, 92, 7861-7868.	6.5	28
38	Smart Surface-Enhanced Resonance Raman Scattering Nanoprobe for Monitoring Cellular Alkaline Phosphatase Activity during Osteogenic Differentiation. ACS Sensors, 2020, 5, 1758-1767.	7.8	36
39	Multi-functionalized Nano-conjugate for combating multidrug resistant breast Cancer via starvation-assisted chemotherapy. Materials Science and Engineering C, 2020, 116, 111127.	7.3	9
40	Plasmon-Enhanced Four-Wave Mixing Imaging for Microdroplet-Based Single-Cell Analysis. Analytical Chemistry, 2020, 92, 9459-9464.	6.5	5
41	SERS studies on normal epithelial and cancer cells derived from clinical breast cancer specimens. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 237, 118364.	3.9	20
42	Achievement of Highâ€Performance Nondoped Blue OLEDs Based on AlEgens via Construction of Effective Highâ€Lying Chargeâ€Transfer State. Advanced Optical Materials, 2020, 8, 1902195.	7.3	29
43	Revealing Mitochondrial Microenvironmental Evolution Triggered by Photodynamic Therapy. Analytical Chemistry, 2020, 92, 6081-6087.	6.5	19
44	Tumor Microenvironment-Activated Degradable Multifunctional Nanoreactor for Synergistic Cancer Therapy and Glucose SERS Feedback. IScience, 2020, 23, 101274.	4.1	30
45	In situ and ex situ surfaceâ€enhanced Raman spectroscopy (SERS) analysis of cell mitochondria. Journal of Raman Spectroscopy, 2020, 51, 602-610.	2.5	5
46	Pressure-dependent distinct luminescent evolutions of pyrene and TPA-Py single crystals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 237, 118390.	3.9	9
47	Reversible Luminescent Switching in an Organic Cocrystal: Multiâ€Stimuliâ€Induced Crystalâ€toâ€Crystal Phase Transformation. Angewandte Chemie - International Edition, 2020, 59, 15098-15103.	13.8	100
48	A two-photon fluorescence, carbonized polymer dot (CPD)-based, wide range pH nanosensor: a view from the surface state. Nanoscale, 2020, 12, 9094-9103.	5.6	22
49	Boosting a sub-10  nm nanogap array by plasmon-triggered waveguide resonance. Photonics Research, 2020, 8, 1850.	7.0	4
50	Tracing the molecular dynamics of living mitochondria under phototherapy <i>via</i> surface-enhanced Raman scattering spectroscopy. Analyst, The, 2019, 144, 5521-5527.	3.5	10
51	Flexible control of excited state transition under pressure/temperature: distinct stimuli-responsive behaviours of two ESIPT polymorphs. Materials Chemistry Frontiers, 2019, 3, 2128-2136.	5.9	18
52	Ex situ and in situ surface-enhanced Raman spectroscopy for macromolecular profiles of cell nucleus. Analytical and Bioanalytical Chemistry, 2019, 411, 6021-6029.	3.7	7
53	Silver nanoparticle-enhanced four-wave mixing (FWM) imaging technique for visualizing sialic acid on cell membrane. Sensors and Actuators B: Chemical, 2019, 301, 127074.	7.8	7
54	Cellular heterogeneity identified by single-cell alkaline phosphatase (ALP) <i>via</i> a SERRS-microfluidic droplet platform. Lab on A Chip, 2019, 19, 335-342.	6.0	55

#	Article	IF	CITATIONS
55	Photochromism of aminobenzopyrano-xanthene with different fluorescent behavior in solution and the crystal state. Journal of Materials Chemistry C, 2019, 7, 275-280.	5. 5	14
56	The remarkable structural comparison between two-dimensional and three-dimensional of 4, 4′-trimethylenedipyridine/1, 3, 5-trifluoro-2, 4, 6-triiodobenzene co-crystal. Thin Solid Films, 2019, 685, 263-268.	1.8	1
57	Ultrasensitive Raman sensing of alkaline phosphatase activity in serum based on an enzyme-catalyzed reaction. Analytical Methods, 2019, 11, 3501-3505.	2.7	10
58	Solvation-Enhanced Intermolecular Charge Transfer Interaction in Organic Cocrystals: Enlarged C–C Surface Close Contact in Mixed Packing between PTZ and TCNB. ACS Omega, 2019, 4, 10424-10430.	3.5	13
59	Distinguishing cancer cell lines at aÂsingle living cell level via detection of sialic acid by dual-channel plasmonic imaging and by using a SERS-microfluidic droplet platform. Mikrochimica Acta, 2019, 186, 367.	5.0	18
60	SERS-active fiber tip for intracellular and extracellular pH sensing in living single cells. Sensors and Actuators B: Chemical, 2019, 290, 527-534.	7.8	43
61	Luminescent switching and structural transition through multiple external stimuli based on organic molecular polymorphs. Journal of Materials Chemistry C, 2019, 7, 3263-3268.	5.5	44
62	Label-Free Detection of Multiplexed Metabolites at Single-Cell Level via a SERS-Microfluidic Droplet Platform. Analytical Chemistry, 2019, 91, 15484-15490.	6.5	58
63	Pressure-induced remarkable luminescence switch of a dimer form of donor–acceptor–donor triphenylamine (TPA) derivative. Materials Chemistry Frontiers, 2019, 3, 2768-2774.	5.9	15
64	A Smartphone-assisted Paper-based Analytical Device for Fluorescence Assay of Hg2+. Chemical Research in Chinese Universities, 2019, 35, 972-977.	2.6	8
65	Remarkable responsive behaviors of iso-aminobenzopyranoxanthenes: protonation effect, photochromism and piezochromism. Dyes and Pigments, 2019, 162, 831-836.	3.7	9
66	Smart Plasmonic Nanorobot for Real-Time Monitoring Cytochrome c Release and Cell Acidification in Apoptosis during Electrostimulation. Analytical Chemistry, 2019, 91, 1408-1415.	6.5	48
67	Interference-free surface-enhanced Raman scattering nanosensor for imaging and dynamic monitoring of reactive oxygen species in mitochondria during photothermal therapy. Sensors and Actuators B: Chemical, 2019, 285, 84-91.	7.8	25
68	Ultrasensitive and Simultaneous Detection of Two Cytokines Secreted by Single Cell in Microfluidic Droplets via Magnetic-Field Amplified SERS. Analytical Chemistry, 2019, 91, 2551-2558.	6.5	71
69	Waveguide-coupled localized surface plasmon resonance for surface-enhanced Raman scattering: Antenna array as emitters. Sensors and Actuators B: Chemical, 2019, 280, 144-150.	7.8	15
70	Pressure-induced remarkable luminescence-changing behaviours of 9, 10-distyrylanthracene and its derivatives with distinct substituents. Dyes and Pigments, 2019, 161, 182-187.	3.7	11
71	Essay. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 197, 3.	3.9	0
72	Organelle-Targeting Gold Nanorods for Macromolecular Profiling of Subcellular Organelles and Enhanced Cancer Cell Killing. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7910-7918.	8.0	62

#	Article	IF	CITATIONS
73	Reversible Emission Shift: Pressureâ€Induced Wideâ€Range Reversible Emission Shift of Triphenylamineâ€Substituted Anthracene via Hybridized Local and Charge Transfer (HLCT) Excited State (Advanced Optical Materials 3/2018). Advanced Optical Materials, 2018, 6, 1870013.	7.3	3
74	In situ, accurate, surface-enhanced Raman scattering detection of cancer cell nucleus with synchronous location by an alkyne-labeled biomolecular probe. Analytical and Bioanalytical Chemistry, 2018, 410, 585-594.	3.7	12
75	Pressureâ€Induced Wideâ€Range Reversible Emission Shift of Triphenylamineâ€Substituted Anthracene via Hybridized Local and Charge Transfer (HLCT) Excited State. Advanced Optical Materials, 2018, 6, 1700647.	7.3	49
76	Identification of breast cancer through spectroscopic analysis of cell-membrane sialic acid expression. Analytica Chimica Acta, 2018, 1033, 148-155.	5.4	19
77	Targeting epigenetic pathway with gold nanoparticles for acute myeloid leukemia therapy. Biomaterials, 2018, 167, 80-90.	11.4	83
78	Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing. Nanoscale, 2018, 10, 1622-1630.	5.6	120
79	Glucose-bridged silver nanoparticle assemblies for highly sensitive molecular recognition of sialic acid on cancer cells via surface-enhanced raman scattering spectroscopy. Talanta, 2018, 179, 200-206.	5.5	24
80	Remarkable pressure-induced emission enhancement based on intermolecular charge transfer in halogen bond-driven dual-component co-crystals. Physical Chemistry Chemical Physics, 2018, 20, 30297-30303.	2.8	18
81	Quantitative Determination of Urine Glucose: Combination of Laminar Flow in Microfluidic Chip with SERS Probe Technique. Chemical Research in Chinese Universities, 2018, 34, 899-904.	2.6	8
82	In situ exploration of characteristics of macropinocytosis and size range of internalized substances in cells by 3D-structured illumination microscopy. International Journal of Nanomedicine, 2018, Volume 13, 5321-5333.	6.7	9
83	Nucleus and Mitochondria Targeting Theranostic Plasmonic Surface-Enhanced Raman Spectroscopy Nanoprobes as a Means for Revealing Molecular Stress Response Differences in Hyperthermia Cell Death between Cancerous and Normal Cells. Analytical Chemistry, 2018, 90, 13356-13364.	6.5	50
84	Investigation of supramolecular interaction in 4, $4\hat{a}\in^2$ -bipyridine crystal by hydrostatic pressure spectroscopies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 202, 70-75.	3.9	1
85	Tunable luminescence of a novel organic co-crystal based on intermolecular charge transfer under pressure. Journal of Materials Chemistry C, 2018, 6, 8958-8965.	5.5	40
86	Investigating Dynamic Molecular Events in Melanoma Cell Nucleus During Photodynamic Therapy by SERS. Frontiers in Chemistry, 2018, 6, 665.	3.6	21
87	Tracing sialoglycans on cell membrane via surface-enhanced Raman scattering spectroscopy with a phenylboronic acid-based nanosensor in molecular recognition. Biosensors and Bioelectronics, 2017, 94, 148-154.	10.1	37
88	Tracing the Therapeutic Process of Targeted Aptamer/Drug Conjugate on Cancer Cells by Surface-Enhanced Raman Scattering Spectroscopy. Analytical Chemistry, 2017, 89, 2844-2851.	6.5	58
89	A recyclable silver ions-specific surface-enhanced Raman scattering (SERS) sensor. Talanta, 2017, 171, 159-165.	5.5	10
90	Facile detection of glucose in human serum employing silver-ion-guided surface-enhanced Raman spectroscopy signal amplification. Analyst, The, 2017, 142, 2887-2891.	3.5	18

#	Article	IF	Citations
91	Ultrasensitive Detection of Capsaicin in Oil for Fast Identification of Illegal Cooking Oil by SERRS. ACS Omega, 2017, 2, 8401-8406.	3.5	23
92	Integrated plasmon-enhanced Raman scattering (iPERS) spectroscopy. Scientific Reports, 2017, 7, 14630.	3.3	11
93	Aptamer-based surface-enhanced Raman scattering (SERS) sensor for thrombin based on supramolecular recognition, oriented assembly, and local field coupling. Analytical and Bioanalytical Chemistry, 2017, 409, 235-242.	3.7	23
94	Modulation of hot regions in waveguide-based evanescent-field-coupled localized surface plasmons for plasmon-enhanced spectroscopy. Photonics Research, 2017, 5, 527.	7.0	19
95	Resonance Raman spectroscopy studies on photoinduced AgTCNQF ₄ charge transfer and its electrical switching behavior. Journal of Raman Spectroscopy, 2016, 47, 432-436.	2.5	1
96	Construction of highly sensitive surface-enhanced Raman scattering (SERS) nanosensor aimed for the testing of glucose in urine. RSC Advances, 2016, 6, 53800-53803.	3.6	24
97	Fe ₃ O ₄ @Graphene Oxide@Ag Particles for Surface Magnet Solid-Phase Extraction Surface-Enhanced Raman Scattering (SMSPE-SERS): From Sample Pretreatment to Detection All-in-One. ACS Applied Materials & Detection All-in-One. ACS Applied Materials & Detection All-in-One.	8.0	106
98	Glucose oxidase probe as a surface-enhanced Raman scattering sensor for glucose. Analytical and Bioanalytical Chemistry, 2016, 408, 7513-7520.	3.7	32
99	SERS determination of protease through a particle-on-a-film configuration constructed by electrostatic assembly in an enzymatic hydrolysis reaction. RSC Advances, 2016, 6, 90120-90125.	3.6	16
100	Plasmon-Driven Dynamic Response of a Hierarchically Structural Silver-Decorated Nanorod Array for Sub-10 nm Nanogaps. ACS Applied Materials & Samp; Interfaces, 2016, 8, 15623-15629.	8.0	18
101	A voltage-controlled silver nanograting device for dynamic modulation of transmitted light based on the surface plasmon polariton effect. Nanoscale, 2016, 8, 4650-4656.	5.6	3
102	An organic–metal–inorganic three-component nanojunction array: design, construction and its reversible diode-like resistive electrical switching behavior. Journal of Materials Chemistry C, 2016, 4, 504-512.	5.5	3
103	Highly sensitive SERS sensor for mercury ions based on the catalytic reaction of mercury ion decorated Ag nanoparticles. RSC Advances, 2015, 5, 49759-49764.	3.6	31
104	A highly sensitive SERS sensor for quantitative analysis of glucose based on the chemical etching of silver nanoparticles. Journal of Optics (United Kingdom), 2015, 17, 114020.	2,2	20
105	Comparison of Shearing Force and Hydrostatic Pressure on Molecular Structures of Triphenylamine by Fluorescence and Raman Spectroscopies. Journal of Physical Chemistry A, 2015, 119, 1303-1308.	2.5	58
106	In Situ Surface-Enhanced Raman Scattering Spectroscopy Exploring Molecular Changes of Drug-Treated Cancer Cell Nucleus. Analytical Chemistry, 2015, 87, 2504-2510.	6.5	57
107	Preparation of surface-enhanced Raman scattering (SERS)-active optical fiber sensor by laser-induced Ag deposition and its application in bioidentification of biotin/avidin. Chemical Research in Chinese Universities, 2015, 31, 25-30.	2.6	7
108	Note: A portable Raman analyzer for microfluidic chips based on a dichroic beam splitter for integration of imaging and signal collection light paths. Review of Scientific Instruments, 2015, 86, 056109.	1.3	2

#	Article	IF	CITATIONS
109	Aptamer-Based Surface-Enhanced Raman Scattering-Microfluidic Sensor for Sensitive and Selective Polychlorinated Biphenyls Detection. Analytical Chemistry, 2015, 87, 9555-9558.	6.5	84
110	Reversible Piezofluorochromic Property and Intrinsic Structure Changes of Tetra(4-methoxyphenyl)ethylene under High Pressure. Journal of Physical Chemistry A, 2015, 119, 9218-9224.	2.5	36
111	Note: Raman microspectroscopy integrated with fluorescence and dark field imaging. Review of Scientific Instruments, 2014, 85, 056109.	1.3	24
112	A highly sensitive microfluidics system for multiplexed surface-enhanced Raman scattering (SERS) detection based on Ag nanodot arrays. RSC Advances, 2014, 4, 54434-54440.	3.6	37
113	DNAzyme-Based Plasmonic Nanomachine for Ultrasensitive Selective Surface-Enhanced Raman Scattering Detection of Lead Ions via a Particle-on-a-Film Hot Spot Construction. Analytical Chemistry, 2014, 86, 11494-11497.	6.5	50
114	Exploring type II microcalcifications in benign and premalignant breast lesions by shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 132, 397-402.	3.9	20
115	The use of Au@SiO2 shell-isolated nanoparticle-enhanced Raman spectroscopy for human breast cancer detection. Analytical and Bioanalytical Chemistry, 2014, 406, 5425-5432.	3.7	40
116	A Surface-Enhanced Raman Scattering Optrode Prepared by <i>in Situ</i> Photoinduced Reactions and Its Application for Highly Sensitive On-Chip Detection. ACS Applied Materials & Detection. ACS Applied Materials & Detection. 11706-11713.	8.0	18
117	Preparation of hierarchically structured anodic aluminum oxide by a hexagonal embedded nanosphere array. RSC Advances, 2014, 4, 45147-45150.	3.6	5
118	Luminescent composite polymer fibers: In situ synthesis of silver nanoclusters in electrospun polymer fibers and application. Materials Science and Engineering C, 2014, 42, 333-340.	7.3	17
119	Waveguide-Enhanced Surface Plasmons for Ultrasensitive SERS Detection. Journal of Physical Chemistry Letters, 2013, 4, 3153-3157.	4.6	39
120	A Long-Range Surface Plasmon Resonance/Probe/Silver Nanoparticle (LRSPR-P-NP) Nanoantenna Configuration for Surface-Enhanced Raman Scattering. Journal of Physical Chemistry Letters, 2012, 3, 2773-2778.	4.6	25
121	Hierarchical self-assembly of CdTe quantum dots into hyperbranched nanobundles: Suppression of biexciton Auger recombination. Nanoscale, 2011, 3, 2882.	5.6	19
122	Long-Range Surface Plasmon Field-Enhanced Raman Scattering Spectroscopy Based on Evanescent Field Excitation. Journal of Physical Chemistry Letters, 2011, 2, 2218-2222.	4.6	41
123	Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation. Chemical Communications, 2011, 47, 3784.	4.1	78
124	Note: Simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scattering. Review of Scientific Instruments, 2010, 81, 036105.	1.3	38
125	Photochemical Modification of an Optical Fiber Tip with a Silver Nanoparticle Film:  A SERS Chemical Sensor. Langmuir, 2008, 24, 4394-4398.	3.5	95
126	Laser-Induced Growth of Monodisperse Silver Nanoparticles with Tunable Surface Plasmon Resonance Properties and a Wavelength Self-Limiting Effect. Journal of Physical Chemistry C, 2007, 111, 14962-14967.	3.1	114

Shu-Ping Xu

#	Article	IF	CITATIONS
127	Surface-enhanced Raman scattering studies on immunoassay. Journal of Biomedical Optics, 2005, 10, 031112.	2.6	57
128	Immunoassay using probe-labelling immunogold nanoparticles with silver staining enhancement via surface-enhanced Raman scattering. Analyst, The, 2004, 129, 63.	3.5	189