
Yaping Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/537053/publications.pdf Version: 2024-02-01

YADING WANG

#	Article	IF	CITATIONS
1	Rg1 Protects Hematopoietic Stem Cells from LiCl-Induced Oxidative Stress via Wnt Signaling Pathway. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-10.	1.2	4
2	Evaluation of the cargo contents and potential role of extracellular vesicles in osteoporosis. Aging, 2021, 13, 19282-19292.	3.1	4
3	Angelica Polysaccharide Antagonizes 5-FU-Induced Oxidative Stress Injury to Reduce Apoptosis in the Liver Through Nrf2 Pathway. Frontiers in Oncology, 2021, 11, 720620.	2.8	21
4	The mitochondria-targeting antioxidant MitoQ alleviated lipopolysaccharide/ d-galactosamine-induced acute liver injury in mice. Immunology Letters, 2021, 240, 24-30.	2.5	7
5	Ginsenoside Rg1 prevents bone marrow mesenchymal stem cell senescence via NRF2 and PI3K/Akt signaling. Free Radical Biology and Medicine, 2021, 174, 182-194.	2.9	31
6	Ginsenoside Rg1 Improves Differentiation by Inhibiting Senescence of Human Bone Marrow Mesenchymal Stem Cell via GSK-3β and β-Catenin. Stem Cells International, 2020, 2020, 1-16.	2.5	12
7	Effects of Human Amnion–Derived Mesenchymal Stem Cell (hAD-MSC) Transplantation In Situ on Primary Ovarian Insufficiency in SD Rats. Reproductive Sciences, 2020, 27, 1502-1512.	2.5	26
8	Nuclear accumulation of pyruvate kinase M2 promotes liver regeneration via activation of signal transducer and activator of transcription 3. Life Sciences, 2020, 250, 117561.	4.3	4
9	Ginsenoside Rg1 protects against d-galactose induced fatty liver disease in a mouse model via FOXO1 transcriptional factor. Life Sciences, 2020, 254, 117776.	4.3	26
10	Human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation improves ovarian function in rats with premature ovarian insufficiency (POI) at least partly through a paracrine mechanism. Stem Cell Research and Therapy, 2019, 10, 46.	5.5	118
11	Study on the Dynamic Biological Characteristics of Human Bone Marrow Mesenchymal Stem Cell Senescence. Stem Cells International, 2019, 2019, 1-9.	2.5	20
12	Effects of Ginsenoside Rg1 Regulating Wnt/ <i>β</i> -Catenin Signaling on Neural Stem Cells to Delay Brain Senescence. Stem Cells International, 2019, 2019, 1-12.	2.5	19
13	Effect of Angelica polysaccharide on brain senescence of Nestin-GFP mice induced by D-galactose. Neurochemistry International, 2019, 122, 149-156.	3.8	41
14	Protective effects of ginsenoside Rg1 on splenocytes and thymocytes in an aging rat model induced by d-galactose. International Immunopharmacology, 2018, 58, 94-102.	3.8	37
15	Ginsenoside Rg1 Decreases Oxidative Stress and Down-Regulates Akt/mTOR Signalling to Attenuate Cognitive Impairment in Mice and Senescence of Neural Stem Cells Induced by d-Galactose. Neurochemical Research, 2018, 43, 430-440.	3.3	63
16	Expression profile of plasma microRNAs and their roles in diagnosis of mild to severe traumatic brain injury. PLoS ONE, 2018, 13, e0204051.	2.5	32
17	The regulation of ginsenoside Rg1 upon aging of bone marrow stromal cell contribute to delaying senescence of bone marrow mononuclear cells (BMNCs). Life Sciences, 2018, 209, 63-68.	4.3	10
18	Ginsenoside Rg1 improves fertility and reduces ovarian pathological damages in premature ovarian failure model of mice. Experimental Biology and Medicine, 2017, 242, 683-691.	2.4	50

YAPING WANG

#	Article	IF	CITATIONS
19	Lowâ€intensity pulsed ultrasound activates <scp>ERK</scp> 1/2 and <scp>PI</scp> 3Kâ€Akt signalling pathways and promotes the proliferation of human amnionâ€derived mesenchymal stem cells. Cell Proliferation, 2017, 50, .	5.3	50
20	The protective effect of Ginsenoside Rg1 on aging mouse pancreas damage induced by D-galactose. Experimental and Therapeutic Medicine, 2017, 14, 616-622.	1.8	18
21	Angelica sinensis Polysaccharides Ameliorate Stress-Induced Premature Senescence of Hematopoietic Cell via Protecting Bone Marrow Stromal Cells from Oxidative Injuries Caused by 5-Fluorouracil. International Journal of Molecular Sciences, 2017, 18, 2265.	4.1	38
22	Angelica Sinensis Polysaccharide Prevents Hematopoietic Stem Cells Senescence in D-Galactose-Induced Aging Mouse Model. Stem Cells International, 2017, 2017, 1-12.	2.5	33
23	Effects of low-intensity pulsed ultrasound (LIPUS)-pretreated human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation on primary ovarian insufficiency in rats. Stem Cell Research and Therapy, 2017, 8, 283.	5.5	67
24	Protective Effect of Ginsenoside Rg1 on Hematopoietic Stem/Progenitor Cells through Attenuating Oxidative Stress and the Wnt/β-Catenin Signaling Pathway in a Mouse Model of d-Galactose-induced Aging. International Journal of Molecular Sciences, 2016, 17, 849.	4.1	61
25	Ginsenoside Rg1 protects human umbilical cord blood-derived stromal cells against tert-Butyl hydroperoxide-induced apoptosis through Akt–FoxO3a–Bim signaling pathway. Molecular and Cellular Biochemistry, 2016, 421, 75-87.	3.1	12
26	Mechanism of ginsenoside Rg1 renal protection in a mouse model of <scp>d</scp> -galactose-induced subacute damage. Pharmaceutical Biology, 2016, 54, 1815-1821.	2.9	27
27	Protective effects of ginsenoside Rg1 on aging Sca-1+ hematopoietic cells. Molecular Medicine Reports, 2015, 12, 3621-3628.	2.4	15
28	Regulation of MUTYH, a DNA Repair Enzyme, in Renal Proximal Tubular Epithelial Cells. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-9.	4.0	7
29	The positive effects of Ginsenoside Rg1 upon the hematopoietic microenvironment in a D-Galactose-induced aged rat model. BMC Complementary and Alternative Medicine, 2015, 15, 119.	3.7	44
30	Ginsenoside Rg1 Prevents Cognitive Impairment and Hippocampus Senescence in a Rat Model of D-Galactose-Induced Aging. PLoS ONE, 2014, 9, e101291.	2.5	145
31	Establishment of an aging model of Sca-1+ hematopoietic stem cell and studies on its relative biological mechanisms. In Vitro Cellular and Developmental Biology - Animal, 2011, 47, 149-156.	1.5	10
32	Inducing dopaminergic differentiation of expanded rat mesencephalic neural stem cells by ascorbic acid in vitro *. Progress in Natural Science: Materials International, 2004, 14, 26-30.	4.4	0
33	Factors influencing the identification of major genes in a complex disease genome scan. Genetic Epidemiology, 1997, 14, 933-938.	1.3	4