Benjamin Kroposki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5370472/publications.pdf Version: 2024-02-01

RENIAMIN KROPOSKI

#	Article	IF	CITATIONS
1	Cyber-enabled grids: Shaping future energy systems. Advances in Applied Energy, 2021, 1, 100003.	13.2	30
2	The challenges of achieving a 100% renewable electricity system in the United States. Joule, 2021, 5, 1331-1352.	24.0	99
3	Application of Mobile Energy Storage for Enhancing Power Grid Resilience: A Review. Energies, 2021, 14, 6476.	3.1	31
4	A Multidimensional Holistic Framework for the Security of Distributed Energy and Control Systems. IEEE Systems Journal, 2020, 14, 17-27.	4.6	15
5	Transmission Expansion Planning Test System for AC/DC Hybrid Grid With High Variable Renewable Energy Penetration. IEEE Transactions on Power Systems, 2020, 35, 2597-2608.	6.5	80
6	Autonomous Energy Grids: Controlling the Future Grid With Large Amounts of Distributed Energy Resources. IEEE Power and Energy Magazine, 2020, 18, 37-46.	1.6	42
7	Addressing technical challenges in 100% variable inverterâ€based renewable energy power systems. Wiley Interdisciplinary Reviews: Energy and Environment, 2020, 9, e376.	4.1	47
8	Blackstart of Power Grids with Inverter-Based Resources. , 2020, , .		29
9	Potential Impacts of Transportation and Building Electrification on the Grid: A Review of Electrification Projections and Their Effects on Grid Infrastructure, Operation, and Planning. Current Sustainable/Renewable Energy Reports, 2019, 6, 169-176.	2.6	29
10	The Role of Concentrating Solar Power Toward High Renewable Energy Penetrated Power Systems. , 2019, , .		1
11	Economic justification of concentrating solar power in high renewable energy penetrated power systems. Applied Energy, 2018, 222, 649-661.	10.1	76
12	Taxonomy for Evaluation of Distributed Control Strategies for Distributed Energy Resources. IEEE Transactions on Smart Grid, 2018, 9, 5185-5195.	9.0	37
13	The Role of Concentrating Solar Power Toward High Renewable Energy Penetrated Power Systems. IEEE Transactions on Power Systems, 2018, 33, 6630-6641.	6.5	183
14	Autonomous Energy Grids. , 2018, , .		10
15	Achieving a 100% Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable Energy. IEEE Power and Energy Magazine, 2017, 15, 61-73.	1.6	846
16	Terawatt-scale photovoltaics: Trajectories and challenges. Science, 2017, 356, 141-143.	12.6	303
17	Integrating high levels of variable renewable energy into electric power systems. Journal of Modern Power Systems and Clean Energy, 2017, 5, 831-837.	5.4	107

18 Grid Modernization Laboratory Consortium - Testing and Verification. , 2017, , .

3

BENJAMIN KROPOSKI

#	Article	IF	CITATIONS
19	Lab Tests: Verifying That Smart Grid Power Converters Are Truly Smart. IEEE Power and Energy Magazine, 2015, 13, 30-42.	1.6	51
20	The Tianjin 2014 Symposium on Microgrids: A meeting of the minds for international microgrid experts IEEE Electrification Magazine, 2015, 3, 79-85.	1.8	0
21	Energy Storage in the Future Grid [Viewpoint]. IEEE Electrification Magazine, 2015, 3, 64-62.	1.8	0
22	Energy Systems Integration: An Evolving Energy Paradigm. Electricity Journal, 2014, 27, 36-47.	2.5	38
23	Selection of Distribution Feeders for Implementing Distributed Generation and Renewable Energy Applications. IEEE Transactions on Industry Applications, 2013, 49, 2825-2834.	4.9	20
24	Optimum Sizing and Placement of Distributed and Renewable Energy Sources in Electric Power Distribution Systems. IEEE Transactions on Industry Applications, 2013, 49, 2741-2752.	4.9	60
25	Guest Editorial: Special Section on Applications of Solar Energy to Power Systems. IEEE Transactions on Sustainable Energy, 2013, 4, 463-463.	8.8	4
26	An Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop: Part III – Grid Interconnection System Evaluator. , 2013, , .		5
27	Steady-State Analysis of Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders. IEEE Transactions on Sustainable Energy, 2013, 4, 350-357.	8.8	197
28	Development of a real-time, high-speed distribution level data acquisition system. , 2012, , .		5
29	Dark Shadows. IEEE Power and Energy Magazine, 2011, 9, 33-41.	1.6	89
30	Fault current contribution from single-phase PV inverters. , 2011, , .		26
31	Benefits of Power Electronic Interfaces for Distributed Energy Systems. IEEE Transactions on Energy Conversion, 2010, 25, 901-908.	5.2	255
32	Selection of distribution feeders for implementing distributed and renewable energy applications. , 2009, , .		3
33	An integration facility to accelerate deployment of distributed energy resources in microgrids. , 2009, , .		11
34	Photovoltaic systems interconnected onto secondary network distribution systems. , 2009, , .		2
35	A review of power electronics interfaces for distributed energy systems towards achieving low-cost modular design. Renewable and Sustainable Energy Reviews, 2009, 13, 2323-2335.	16.4	122
36	Electricity, resources, and building systems integration at the National Renewable Energy Laboratory. , 2009, , .		10

BENJAMIN KROPOSKI

#	Article	IF	CITATIONS
37	Evaluation of VAR control and voltage regulation functionalities in a single-phase utility-connected inverter for distributed energy applications. , 2009, , .		11
38	The sun also rises. IEEE Power and Energy Magazine, 2009, 7, 45-54.	1.6	36
39	Impacts of plug-in vehicles and distributed storage on electric power delivery networks. , 2009, , .		21
40	Optimum Sizing and Placement of Distributed and Renewable Energy Sources in Electric Power Distribution Systems. , 2009, , .		9
41	Making microgrids work. IEEE Power and Energy Magazine, 2008, 6, 40-53.	1.6	536
42	Microgrid standards and technologies. , 2008, , .		83
43	Advancement of energy storage devices and applications in electrical power system. , 2008, , .		123
44	A review of plug-in vehicles and vehicle-to-grid capability. , 2008, , .		113
45	Advancements in Distributed Generation Issues Interconnection, Modeling, and Tariffs. IEEE Power Engineering Society General Meeting, 2007, , .	0.0	3
46	Microgrid Standards and Technology Development. IEEE Power Engineering Society General Meeting, 2007, , .	0.0	29
47	Electrolysis: Opportunities for Electric Power Utilities in a Hydrogen Economy. , 2006, , .		5
48	Improvements in the performance of a 1-kW copper indium diselenide array. , 1999, , .		0