
## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5369719/publications.pdf Version: 2024-02-01



FANCLU

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Comparisons of photosynthetic and anatomical traits between wild and domesticated cotton. Journal of Experimental Botany, 2022, 73, 873-885.                                                                                       | 4.8 | 15        |
| 2  | Protoplast Dissociation and Transcriptome Analysis Provides Insights to Salt Stress Response in Cotton. International Journal of Molecular Sciences, 2022, 23, 2845.                                                               | 4.1 | 13        |
| 3  | Late embryogenesis abundant gene LEA3 (Ch_A08C0694) enhances drought and salt stress tolerance in cotton. International Journal of Biological Macromolecules, 2022, 207, 700-714.                                                  | 7.5 | 20        |
| 4  | From Sequencing to Genome Editing for Cotton Improvement. Trends in Biotechnology, 2021, 39, 221-224.                                                                                                                              | 9.3 | 27        |
| 5  | Identification and characterization of genes related to salt stress tolerance within segregation distortion regions of genetic map in F2 population of upland cotton. PLoS ONE, 2021, 16, e0247593.                                | 2.5 | 8         |
| 6  | Comparative Genome Analyses Highlight Transposon-Mediated Genome Expansion and the Evolutionary<br>Architecture of 3D Genomic Folding in Cotton. Molecular Biology and Evolution, 2021, 38, 3621-3636.                             | 8.9 | 41        |
| 7  | Genome wide identification and characterization of light-harvesting Chloro a/b binding (LHC) genes<br>reveals their potential role in enhancing drought tolerance in Gossypium hirsutum. Journal of<br>Cotton Research, 2021, 4, . | 2.5 | 8         |
| 8  | Functional Characterization of GhACX3 Gene Reveals Its Significant Role in Enhancing Drought and Salt Stress Tolerance in Cotton. Frontiers in Plant Science, 2021, 12, 658755.                                                    | 3.6 | 15        |
| 9  | Identification and functional characterization of Gh_D01G0514 (GhNAC072) transcription factor in response to drought stress tolerance in cotton. Plant Physiology and Biochemistry, 2021, 166, 361-375.                            | 5.8 | 15        |
| 10 | Knockdown of 60S ribosomal protein L14-2 reveals their potential regulatory roles to enhance<br>drought and salt tolerance in cotton. Journal of Cotton Research, 2021, 4, .                                                       | 2.5 | 13        |
| 11 | Enhanced photosynthetic nitrogen use efficiency and increased nitrogen allocation to photosynthetic machinery under cotton domestication. Photosynthesis Research, 2021, 150, 239-250.                                             | 2.9 | 19        |
| 12 | Multi-Omics-Based Identification and Functional Characterization of Gh_A06G1257 Proves Its Potential Role in Drought Stress Tolerance in Gossypium hirsutum. Frontiers in Plant Science, 2021, 12, 746771.                         | 3.6 | 13        |
| 13 | GhGLK1 a Key Candidate Gene From GARP Family Enhances Cold and Drought Stress Tolerance in Cotton. Frontiers in Plant Science, 2021, 12, 759312.                                                                                   | 3.6 | 17        |
| 14 | Functional Characterization of Cotton C-Repeat Binding Factor Genes Reveal Their Potential Role in<br>Cold Stress Tolerance. Frontiers in Plant Science, 2021, 12, 766130.                                                         | 3.6 | 10        |
| 15 | Genome sequencing of the Australian wild diploid species <i>Gossypium australe</i> highlights<br>disease resistance and delayed gland morphogenesis. Plant Biotechnology Journal, 2020, 18, 814-828.                               | 8.3 | 61        |
| 16 | Knockdown of Gh_A05G1554 (GhDHN_03) and Gh_D05G1729 (GhDHN_04) Dehydrin genes, Reveals their potential role in enhancing osmotic and salt tolerance in cotton. Genomics, 2020, 112, 1902-1915.                                     | 2.9 | 19        |
| 17 | Genetic regulatory networks for salt-alkali stress in Gossypium hirsutum with differing morphological characteristics. BMC Genomics, 2020, 21, 15.                                                                                 | 2.8 | 33        |
| 18 | Transcriptomic and proteomic analyses of a new cytoplasmic male sterile line with a wild Gossypium bickii genetic background. BMC Genomics, 2020, 21, 859.                                                                         | 2.8 | 11        |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Genetic map construction and functional characterization of genes within the segregation<br>distortion regions (SDRs) in the F2:3 populations derived from wild cotton species of the D genome.<br>Journal of Cotton Research, 2020, 3, .          | 2.5 | 0         |
| 20 | Comparative transcriptome analysis reveals evolutionary divergence and shared network of cold and salt stress response in diploid D-genome cotton. BMC Plant Biology, 2020, 20, 518.                                                               | 3.6 | 6         |
| 21 | Versatile Roles of Aquaporins in Plant Growth and Development. International Journal of Molecular<br>Sciences, 2020, 21, 9485.                                                                                                                     | 4.1 | 52        |
| 22 | Chromosome Painting Based on Bulked Oligonucleotides in Cotton. Frontiers in Plant Science, 2020,<br>11, 802.                                                                                                                                      | 3.6 | 7         |
| 23 | Identification of QTLs and candidate genes for physiological traits associated with drought tolerance in cotton. Journal of Cotton Research, 2020, 3, .                                                                                            | 2.5 | 16        |
| 24 | ldentification of a genome-specific repetitive element in the <i>Gossypium</i> D genome. PeerJ, 2020, 8, e8344.                                                                                                                                    | 2.0 | 2         |
| 25 | Genome-wide analysis of the cotton G-coupled receptor proteins (GPCR) and functional analysis of GTOM1, a novel cotton GPCR gene under drought and cold stress. BMC Genomics, 2019, 20, 651.                                                       | 2.8 | 21        |
| 26 | Genome-wide identification of OSCA gene family and their potential function in the regulation of dehydration and salt stress in Gossypium hirsutum. Journal of Cotton Research, 2019, 2, .                                                         | 2.5 | 21        |
| 27 | Genome wide characterization, evolution and expression analysis of FBA gene family under salt stress<br>in Gossypium species. Biologia (Poland), 2019, 74, 1539-1552.                                                                              | 1.5 | 3         |
| 28 | Functional characterization of Gh_A08G1120 (GH3.5) gene reveal their significant role in enhancing drought and salt stress tolerance in cotton. BMC Genetics, 2019, 20, 62.                                                                        | 2.7 | 39        |
| 29 | A high density SLAF-seq SNP genetic map and QTL for seed size, oil and protein content in upland cotton. BMC Genomics, 2019, 20, 599.                                                                                                              | 2.8 | 20        |
| 30 | Knockdown of GhIQD31 and GhIQD32 increases drought and salt stress sensitivity in Gossypium hirsutum. Plant Physiology and Biochemistry, 2019, 144, 166-177.                                                                                       | 5.8 | 16        |
| 31 | Map-Based Functional Analysis of the GhNLP Genes Reveals Their Roles in Enhancing Tolerance to<br>N-Deficiency in Cotton. International Journal of Molecular Sciences, 2019, 20, 4953.                                                             | 4.1 | 11        |
| 32 | Knockdown of ghAlba_4 and ghAlba_5 Proteins in Cotton Inhibits Root Growth and Increases Sensitivity to Drought and Salt Stresses. Frontiers in Plant Science, 2019, 10, 1292.                                                                     | 3.6 | 6         |
| 33 | Genome-Wide Mining and Identification of Protein Kinase Gene Family Impacts Salinity Stress Tolerance<br>in Highly Dense Genetic Map Developed from Interspecific Cross between G. hirsutum L. and G. darwinii<br>G. Watt. Agronomy, 2019, 9, 560. | 3.0 | 21        |
| 34 | Deep Transcriptome Analysis Reveals Reactive Oxygen Species (ROS) Network Evolution, Response to<br>Abiotic Stress, and Regulation of Fiber Development in Cotton. International Journal of Molecular<br>Sciences, 2019, 20, 1863.                 | 4.1 | 29        |
| 35 | Overexpression of Cotton a DTX/MATE Gene Enhances Drought, Salt, and Cold Stress Tolerance in Transgenic Arabidopsis. Frontiers in Plant Science, 2019, 10, 299.                                                                                   | 3.6 | 68        |
| 36 | RNA-Sequencing, Physiological and RNAi Analyses Provide Insights into the Response Mechanism of the<br>ABC-Mediated Resistance to Verticillium dahliae Infection in Cotton. Genes, 2019, 10, 110.                                                  | 2.4 | 31        |

| #  | Article                                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Comparative transcriptome, physiological and biochemical analyses reveal response mechanism<br>mediated by CBF4 and ICE2 in enhancing cold stress tolerance in Gossypium thurberi. AoB PLANTS, 2019,<br>11, plz045.                                                                                       | 2.3 | 27        |
| 38 | Genome wide identification of the trihelix transcription factors and overexpression of<br><i>Gh_A05G2067</i> ( <i>GTâ€2</i> ), a novel gene contributing to increased drought and salt stresses<br>tolerance in cotton. Physiologia Plantarum, 2019, 167, 447-464.                                        | 5.2 | 57        |
| 39 | Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genetics, 2018, 19, 6.                                                                                                                                         | 2.7 | 216       |
| 40 | Genome-Wide Mining and Characterization of SSR Markers for Gene Mapping and Gene Diversity in<br>Gossypium barbadense L. and Gossypium darwinii G. Watt Accessions. Agronomy, 2018, 8, 181.                                                                                                               | 3.0 | 6         |
| 41 | SSR-Linkage map of interspecific populations derived from Gossypium trilobum and Gossypium thurberi<br>and determination of genes harbored within the segregating distortion regions. PLoS ONE, 2018, 13,<br>e0207271.                                                                                    | 2.5 | 6         |
| 42 | Discovery and annotation of a novel transposable element family in Gossypium. BMC Plant Biology, 2018, 18, 307.                                                                                                                                                                                           | 3.6 | 6         |
| 43 | Whole Genome Analysis of Cyclin Dependent Kinase (CDK) Gene Family in Cotton and Functional<br>Evaluation of the Role of CDKF4 Gene in Drought and Salt Stress Tolerance in Plants. International<br>Journal of Molecular Sciences, 2018, 19, 2625.                                                       | 4.1 | 51        |
| 44 | Simple Sequence Repeat (SSR) Genetic Linkage Map of D Genome Diploid Cotton Derived from an<br>Interspecific Cross between Gossypium davidsonii and Gossypium klotzschianum. International<br>Journal of Molecular Sciences, 2018, 19, 204.                                                               | 4.1 | 31        |
| 45 | Construction and characterization of a bacterial artificial chromosome library for Gossypium mustelinum. PLoS ONE, 2018, 13, e0196847.                                                                                                                                                                    | 2.5 | 3         |
| 46 | Genome-Wide Analysis of Multidrug and Toxic Compound Extrusion ( <i>MATE</i> ) Family in<br><i>Gossypium raimondii</i> and <i>Gossypium arboreum</i> and Its Expression Analysis Under Salt,<br>Cadmium, and Drought Stress. G3: Genes, Genomes, Genetics, 2018, 8, 2483-2500.                            | 1.8 | 56        |
| 47 | Cotton Late Embryogenesis Abundant ( <i>LEA2)</i> Genes Promote Root Growth and Confer Drought<br>Stress Tolerance in Transgenic <i>Arabidopsis thaliana</i> . G3: Genes, Genomes, Genetics, 2018, 8,<br>2781-2803.                                                                                       | 1.8 | 51        |
| 48 | Comparative Chloroplast Genomics of Gossypium Species: Insights Into Repeat Sequence Variations and Phylogeny. Frontiers in Plant Science, 2018, 9, 376.                                                                                                                                                  | 3.6 | 86        |
| 49 | A Novel G-Protein-Coupled Receptors Gene from Upland Cotton Enhances Salt Stress Tolerance in<br>Transgenic Arabidopsis. Genes, 2018, 9, 209.                                                                                                                                                             | 2.4 | 50        |
| 50 | GBS Mapping and Analysis of Genes Conserved between Gossypium tomentosum and Gossypium<br>hirsutum Cotton Cultivars that Respond to Drought Stress at the Seedling Stage of the BC2F2<br>Generation. International Journal of Molecular Sciences, 2018, 19, 1614.                                         | 4.1 | 39        |
| 51 | Assessment of Genetic Diversity, Population Structure, and Evolutionary Relationship of<br>Uncharacterized Genes in a Novel Germplasm Collection of Diploid and Allotetraploid Gossypium<br>Accessions Using EST and Genomic SSR Markers. International Journal of Molecular Sciences, 2018, 19,<br>2401. | 4.1 | 20        |
| 52 | Fine-mapping qFS07.1 controlling fiber strength in upland cotton (Gossypium hirsutum L.). Theoretical and Applied Genetics, 2017, 130, 795-806.                                                                                                                                                           | 3.6 | 63        |
| 53 | Molecular evolution of the plastid genome during diversification of the cotton genus. Molecular<br>Phylogenetics and Evolution, 2017, 112, 268-276.                                                                                                                                                       | 2.7 | 52        |
| 54 | Chromosome structural variation of two cultivated tetraploid cottons and their ancestral diploid species based on a new high-density genetic map. Scientific Reports, 2017, 7, 7640.                                                                                                                      | 3.3 | 6         |

| #  | Article                                                                                                                                                                                                                                     | IF        | CITATIONS     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|
| 55 | Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits<br>across multiple environments in Upland cotton (Gossypium hirsutum L.). Molecular Genetics and<br>Genomics, 2017, 292, 1281-1306. | 2.1       | 36            |
| 56 | Genome-wide assessment of genetic diversity and fiber quality traits characterization in Gossypium hirsutum races. Journal of Integrative Agriculture, 2017, 16, 2402-2412.                                                                 | 3.5       | 7             |
| 57 | Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis. PLoS ONE, 2017, 12, e0178313.                                                                                               | 2.5       | 54            |
| 58 | Cytogenetic maps of homoeologous chromosomes A h01 and D h01 and their integration with the genome assembly in Gossypium hirsutum. Comparative Cytogenetics, 2017, 11, 405-420.                                                             | 0.8       | 2             |
| 59 | Chloroplast DNA Structural Variation, Phylogeny, and Age of Divergence among Diploid Cotton Species. PLoS ONE, 2016, 11, e0157183.                                                                                                          | 2.5       | 58            |
| 60 | Genome Wide SSR High Density Genetic Map Construction from an Interspecific Cross of Gossypium<br>hirsutum × Gossypium tomentosum. Frontiers in Plant Science, 2016, 7, 436.                                                                | 3.6       | 20            |
| 61 | Genetic Analysis and QTL Detection on Fiber Traits Using Two Recombinant Inbred Lines and Their<br>Backcross Populations in Upland Cotton. G3: Genes, Genomes, Genetics, 2016, 6, 2717-2724.                                                | 1.8       | 45            |
| 62 | A Gossypium BAC clone contains key repeat components distinguishing sub-genome of allotetraploidy cottons. Molecular Cytogenetics, 2016, 9, 27.                                                                                             | 0.9       | 6             |
| 63 | QTL mapping for salt tolerance at seedling stage in the interspecific cross of Gossypium tomentosum with Gossypium hirsutum. Euphytica, 2016, 209, 223-235.                                                                                 | 1.2       | 52            |
| 64 | Screening and chromosome localization of two cotton BAC clones. Comparative Cytogenetics, 2016, 10, 1-15.                                                                                                                                   | 0.8       | 3             |
| 65 | Construction of cytogenetic map of Gossypium herbaceum chromosome 1 and its integration with genetic maps. Molecular Cytogenetics, 2015, 8, 2.                                                                                              | 0.9       | 8             |
| 66 | Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL<br>identification in upland cotton (Gossypium hirsutum L.). Molecular Genetics and Genomics, 2015, 290,<br>1683-1700.                      | 2.1       | 54            |
| 67 | A high-density SSR genetic map constructed from a F2 population of Gossypium hirsutum and Gossypium darwinii. Gene, 2015, 574, 273-286.                                                                                                     | 2.2       | 26            |
| 68 | Construction of genetic map and QTL analysis of fiber quality traits for Upland cotton (Gossypium) Tj ETQq0 0 0                                                                                                                             | rgBT /Ove | rlock 10 Tf 5 |
| 69 | Construction of a bacterial artificial chromosome library for Gossypium herbaceum var. africanum.<br>Science Bulletin, 2013, 58, 3199-3201.                                                                                                 | 1.7       | 4             |
| 70 | U niqueness of the Gossypium mustelinum Genome Revealed by GISH and 45 S rDNA FISH. Journal of<br>Integrative Plant Biology, 2013, 55, 654-662.                                                                                             | 8.5       | 8             |
| 71 | Chromosomal Locations of 5S and 45S rDNA in Gossypium Genus and Its Phylogenetic Implications<br>Revealed by FISH. PLoS ONE, 2013, 8, e68207.                                                                                               | 2.5       | 28            |

72Preparations of Meiotic Pachytene Chromosomes and Extended DNA Fibers from Cotton Suitable for<br/>Fluorescence In Situ Hybridization. PLoS ONE, 2012, 7, e33847.2.510

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | QTL Analysis on Yield and Its Components in Recombinant Inbred Lines of Upland Cotton. Acta<br>Agronomica Sinica, 2011, 37, 433-442.                                                               | 0.3 | 13        |
| 74 | Screen of FISH marker of chromosomes at Gossypium D genome species. Chinese Science Bulletin, 2010, 55, 2099-2105.                                                                                 | 0.7 | 4         |
| 75 | Identification of cotton microRNAs and their targets. Gene, 2007, 397, 26-37.                                                                                                                      | 2.2 | 190       |
| 76 | Primary investigation on GISH-NOR in cotton. Science Bulletin, 2005, 50, 425-429.                                                                                                                  | 1.7 | 6         |
| 77 | Genome-Wide Identification and Expression Analysis Elucidates the Potential Role of PFK Gene Family in<br>Drought Stress Tolerance and Sugar Metabolism in Cotton. Frontiers in Genetics, 0, 13, . | 2.3 | 5         |
| 78 | Genome-Wide Dissection of the Genetic Basis for Drought Tolerance in Gossypium hirsutum L. Races.<br>Frontiers in Plant Science, 0, 13, .                                                          | 3.6 | 5         |