QiPing Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5369635/publications.pdf

Version: 2024-02-01

		430874	3	302126
51	1,854 citations	18		39
papers	citations	h-index		g-index
56	56	56		3592
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	The power of genetic diversity in genome-wide association studies of lipids. Nature, 2021, 600, 675-679.	27.8	353
2	Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins. Nature Communications, 2014, 5, 5068.	12.8	216
3	Phenotype risk scores identify patients with unrecognized Mendelian disease patterns. Science, 2018, 359, 1233-1239.	12.6	164
4	Learning from Longitudinal Data in Electronic Health Record and Genetic Data to Improve Cardiovascular Event Prediction. Scientific Reports, 2019, 9, 717.	3. 3	115
5	A missense variant in Mitochondrial Amidoxime Reducing Component 1 gene and protection against liver disease. PLoS Genetics, 2020, 16, e1008629.	3 . 5	101
6	Use of Genetic Variants Related to Antihypertensive Drugs to Inform on Efficacy and Side Effects. Circulation, 2019, 140, 270-279.	1.6	99
7	Predictive Utility of Polygenic Risk Scores for Coronary Heart Disease in Three Major Racial and Ethnic Groups. American Journal of Human Genetics, 2020, 106, 707-716.	6.2	93
8	Association of Genetic Variation With Cirrhosis: A Multi-Trait Genome-Wide Association and Gene–Environment Interaction Study. Gastroenterology, 2021, 160, 1620-1633.e13.	1.3	68
9	<i>LPA</i> Variants Are Associated With Residual Cardiovascular Risk in Patients Receiving Statins. Circulation, 2018, 138, 1839-1849.	1.6	64
10	Individualized risk for statin-induced myopathy: current knowledge, emerging challenges and potential solutions. Pharmacogenomics, 2012, 13, 579-594.	1.3	57
11	Association Between Low-Density Lipoprotein Cholesterol Levels and Risk for Sepsis Among Patients Admitted to the Hospital With Infection. JAMA Network Open, 2019, 2, e187223.	5.9	40
12	Detecting time-evolving phenotypic topics via tensor factorization on electronic health records: Cardiovascular disease case study. Journal of Biomedical Informatics, 2019, 98, 103270.	4.3	32
13	Meta-analysis of genome-wide association studies of HDL cholesterol response to statins. Journal of Medical Genetics, 2016, 53, 835-845.	3.2	28
14	PheMap: a multi-resource knowledge base for high-throughput phenotyping within electronic health records. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 1675-1687.	4.4	28
15	A phenome-wide association study to discover pleiotropic effects of PCSK9, APOB, and LDLR. Npj Genomic Medicine, 2019, 4, 3.	3.8	26
16	A Genetic Approach to the Association Between <i>PCSK9</i> and Sepsis. JAMA Network Open, 2019, 2, e1911130.	5.9	25
17	Relationship between very low low-density lipoprotein cholesterol concentrations not due to statin therapy and risk of type 2 diabetes: A US-based cross-sectional observational study using electronic health records. PLoS Medicine, 2018, 15, e1002642.	8.4	22
18	Associations of Genetically Predicted Lp(a) (Lipoprotein [a]) Levels With Cardiovascular Traits in Individuals of European and African Ancestry. Circulation Genomic and Precision Medicine, 2021, 14, e003354.	3.6	21

#	Article	IF	Citations
19	Using topic modeling via non-negative matrix factorization to identify relationships between genetic variants and disease phenotypes: A case study of Lipoprotein(a) (LPA). PLoS ONE, 2019, 14, e0212112.	2.5	20
20	Phenome-wide association analysis suggests the APOL1 linked disease spectrum primarily drives kidney-specific pathways. Kidney International, 2020, 97, 1032-1041.	5.2	20
21	A retrospective approach to evaluating potential adverse outcomes associated with delay of procedures for cardiovascular and cancer-related diagnoses in the context of COVID-19. Journal of Biomedical Informatics, 2021, 113, 103657.	4.3	20
22	Integrating gene expression and clinical data to identify drug repurposing candidates for hyperlipidemia and hypertension. Nature Communications, 2022, 13, 46.	12.8	19
23	Statin-induced LDL cholesterol response and type 2 diabetes: a bidirectional two-sample Mendelian randomization study. Pharmacogenomics Journal, 2020, 20, 462-470.	2.0	18
24	Minority-centric meta-analyses of blood lipid levels identify novel loci in the Population Architecture using Genomics and Epidemiology (PAGE) study. PLoS Genetics, 2020, 16, e1008684.	3.5	17
25	A unified framework identifies new links between plasma lipids and diseases from electronic medical records across large-scale cohorts. Nature Genetics, 2021, 53, 972-981.	21.4	17
26	A Mendelian Randomization Approach Using 3-HMG-Coenzyme-A Reductase Gene Variation to Evaluate the Association of Statin-Induced Low-Density Lipoprotein Cholesterol Lowering With Noncardiovascular Disease Phenotypes. JAMA Network Open, 2021, 4, e2112820.	5.9	16
27	<i>TPMT</i> and <i>NUDT15</i> Variants Predict Discontinuation of Azathioprine for Myelotoxicity in Patients with Inflammatory Disease: Realâ€World Clinical Results. Clinical Pharmacology and Therapeutics, 2022, 111, 263-271.	4.7	14
28	Race, Genotype, and Azathioprine Discontinuation. Annals of Internal Medicine, 2022, 175, 1092-1099.	3.9	14
29	A study paradigm integrating prospective epidemiologic cohorts and electronic health records to identify disease biomarkers. Nature Communications, 2018, 9, 3522.	12.8	13
30	Coâ€Prescription of Strong <scp>CYP</scp> 1A2 Inhibitors and the Risk of Tizanidineâ€Associated Hypotension: A Retrospective Cohort Study. Clinical Pharmacology and Therapeutics, 2019, 105, 703-709.	4.7	13
31	A Common CNR1 (Cannabinoid Receptor 1) Haplotype Attenuates the Decrease in HDL Cholesterol That Typically Accompanies Weight Gain. PLoS ONE, 2010, 5, e15779.	2.5	12
32	ConceptWAS: A high-throughput method for early identification of COVID-19 presenting symptoms and characteristics from clinical notes. Journal of Biomedical Informatics, 2021, 117, 103748.	4.3	11
33	Pleiotropy in the Genetic Predisposition to Rheumatoid Arthritis: A Phenomeâ€Wide Association Study and Inverse Variance–Weighted Metaâ€Analysis. Arthritis and Rheumatology, 2020, 72, 1483-1492.	5.6	10
34	DDIWAS: High-throughput electronic health record-based screening of drug-drug interactions. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1421-1430.	4.4	10
35	Replication and fine-mapping of genetic predictors of lipid traits in African–Americans. Journal of Human Genetics, 2017, 62, 895-901.	2.3	9
36	Combining clinical and candidate gene data into a risk score for azathioprine-associated leukopenia in routine clinical practice. Pharmacogenomics Journal, 2020, 20, 736-745.	2.0	6

#	Article	IF	CITATIONS
37	Loci identified by a genomeâ€wide association study of carotid artery stenosis in the eMERGE network. Genetic Epidemiology, 2021, 45, 4-15.	1.3	6
38	Approach to Clinical and Genetic Characterization of Statin-Induced Myopathy. Methods in Molecular Biology, 2014, 1175, 67-90.	0.9	6
39	High-throughput framework forÂgenetic analyses of adverse drug reactions using electronic health records. PLoS Genetics, 2021, 17, e1009593.	3.5	5
40	Identifying Potential Therapeutic Applications and Diagnostic Harms of Increased Bilirubin Concentrations: A Clinical and Genetic Approach. Clinical Pharmacology and Therapeutics, 2022, 111, 435-443.	4.7	4
41	Integration of Omics and Phenotypic Data for Precision Medicine. Methods in Molecular Biology, 2022, 2486, 19-35.	0.9	4
42	Brief Report: Predicted Expression of Genes Involved in the Thiopurine Metabolic Pathway and Azathioprine Discontinuation Due to Myelotoxicity. Clinical and Translational Science, 2022, , .	3.1	3
43	Pleiotropy of systemic lupus erythematosus risk alleles and cardiometabolic disorders: A phenome-wide association study and inverse-variance weighted meta-analysis. Lupus, 2021, 30, 1264-1272.	1.6	2
44	Radical Addition of 4-Hydroxyquinazolines and Alkylation of Quinones by the Electro-Induced Homolysis of 4-Alkyl-1,4-diÂhydropyridines. Synthesis, 2022, 54, 2696-2706.	2.3	1
45	Title is missing!. , 2020, 16, e1008684.		0
46	Title is missing!. , 2020, 16, e1008684.		0
47	Title is missing!. , 2020, 16, e1008684.		0
48	Title is missing!. , 2020, 16, e1008684.		0
49	Title is missing!. , 2020, 16, e1008684.		0
50	Title is missing!. , 2020, 16, e1008684.		0
51	Mapping the Read2/CTV3 controlled clinical terminologies to Phecodes in UK Biobank primary care electronic health records: implementation and evaluation AMIA Annual Symposium proceedings, 2021, 2021, 362-371.	0.2	0