
Joanna B Strosznajder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5369326/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Insights on the Role of PPAR-β/δ in Neuroinflammation and Neurodegeneration, and Its Potential Target for Therapy. NeuroMolecular Medicine, 2021, 23, 86-98.	3.4	52
2	Recent Insights into the Interplay of Alpha-Synuclein and Sphingolipid Signaling in Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 6277.	4.1	11
3	Glutamate and GABA in Microglia-Neuron Cross-Talk in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 11677.	4.1	54
4	Down-regulation of cyclin D2 in amyloid β toxicity, inflammation, and Alzheimer's disease. PLoS ONE, 2021, 16, e0259740.	2.5	4
5	Alterations of Transcription of Genes Coding Anti-oxidative and Mitochondria-Related Proteins in Amyloid β Toxicity: Relevance to Alzheimer's Disease. Molecular Neurobiology, 2020, 57, 1374-1388.	4.0	37
6	Acute Systemic Inflammatory Response Alters Transcription Profile of Genes Related to Immune Response and Ca2+ Homeostasis in Hippocampus; Relevance to Neurodegenerative Disorders. International Journal of Molecular Sciences, 2020, 21, 7838.	4.1	14
7	Fingolimod Affects Transcription of Genes Encoding Enzymes of Ceramide Metabolism in Animal Model of Alzheimer's Disease. Molecular Neurobiology, 2020, 57, 2799-2811.	4.0	18
8	The Novel Role of PPAR Alpha in the Brain: Promising Target in Therapy of Alzheimer's Disease and Other Neurodegenerative Disorders. Neurochemical Research, 2020, 45, 972-988.	3.3	161
9	Pramipexole and Fingolimod exert neuroprotection in a mouse model of Parkinson's disease by activation of sphingosine kinase 1 and Akt kinase. Neuropharmacology, 2018, 135, 139-150.	4.1	65
10	Inhibition of Poly(ADP-ribose) Polymerase-1 Enhances Gene Expression of Selected Sirtuins and APP Cleaving Enzymes in Amyloid Beta Cytotoxicity. Molecular Neurobiology, 2018, 55, 4612-4623.	4.0	27
11	Inhibition of poly(ADP-ribose) polymerase-1 alters expression of mitochondria-related genes in PC12 cells: relevance to mitochondrial homeostasis in neurodegenerative disorders. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 281-288.	4.1	19
12	Sphingosine kinase 1/sphingosine-1-phosphate receptors dependent signalling in neurodegenerative diseases. The promising target for neuroprotection in Parkinson's disease. Pharmacological Reports, 2018, 70, 1010-1014.	3.3	28
13	Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders. Neurochemical Research, 2017, 42, 876-890.	3.3	190
14	Alzheimer's amyloid-β peptide disturbs P2X7 receptor-mediated circadian oscillations of intracellular calcium. Folia Neuropathologica, 2016, 4, 360-368.	1.2	11
15	The mechanisms regulating cyclin-dependent kinase 5 in hippocampus during systemic inflammatory response: The effect on inflammatory gene expression. Neurochemistry International, 2016, 93, 103-112.	3.8	17
16	The Lipoxygenases: Their Regulation and Implication in Alzheimer's Disease. Neurochemical Research, 2016, 41, 243-257.	3.3	90
17	Sphingosine-1-Phosphate and Its Effect on Glucose Deprivation/Glucose Reload Stress: From Gene Expression to Neuronal Survival. Molecular Neurobiology, 2015, 51, 1300-1308.	4.0	13
18	Baclofen or nNOS inhibitor affect molecular and behavioral alterations evoked by traumatic spinal cord. Spine Journal, 2015, 15, 1366-1378.	1.3	7

#	Article	IF	CITATIONS
19	The Molecular Mechanism of Amyloid β42 Peptide Toxicity: The Role of Sphingosine Kinase-1 and Mitochondrial Sirtuins. PLoS ONE, 2015, 10, e0137193.	2.5	40
20	Original article The key role of sphingosine kinases in the molecular mechanism of neuronal cell survival and death in an experimental model of Parkinson's disease. Folia Neuropathologica, 2014, 3, 260-269.	1.2	51
21	Sphingosine Kinase 1 and Sphingosine-1-Phosphate in Oxidative Stress Evoked by 1-Methyl-4-Phenylpyridinium (MPP+) in Human Dopaminergic Neuronal Cells. Molecular Neurobiology, 2014, 50, 38-48.	4.0	67
22	Sphingosine Kinases/Sphingosine-1-Phosphate and Death Signalling in APP-Transfected Cells. Neurochemical Research, 2014, 39, 645-652.	3.3	18
23	Expression and activity of PARP family members in the hippocampus during systemic inflammation: Their role in the regulation of prooxidative genes. Neurochemistry International, 2013, 62, 664-673.	3.8	25
24	Docosahexaenoic acid and tetracyclines as promising neuroprotective compounds with poly(ADP-ribose) polymerase inhibitory activities for oxidative/genotoxic stress treatment. Neurochemistry International, 2013, 62, 626-636.	3.8	23
25	Toxicity of extracellular secreted alpha-synuclein: Its role in nitrosative stress and neurodegeneration. Neurochemistry International, 2013, 62, 776-783.	3.8	29
26	Insights into Mitochondrial Dysfunction: Aging, Amyloid-β, and Tau–A Deleterious Trio. Antioxidants and Redox Signaling, 2012, 16, 1456-1466.	5.4	115
27	Poly(ADP-ribose) Polymerase-1 in Amyloid Beta Toxicity and Alzheimer's Disease. Molecular Neurobiology, 2012, 46, 78-84.	4.0	87
28	A novel mechanism of non-Aβ component of Alzheimer's disease amyloid (NAC) neurotoxicity. Interplay between p53 protein and cyclin-dependent kinase 5 (Cdk5). Neurochemistry International, 2011, 58, 206-214.	3.8	20
29	Alterations of Cyclin dependent kinase 5 expression and phosphorylation in Amyloid precursor protein (APP)-transfected PC12 cells. FEBS Letters, 2011, 585, 1243-1248.	2.8	17
30	Lipoxygenases and Poly(ADP-Ribose) Polymerase in Amyloid Beta Cytotoxicity. Neurochemical Research, 2011, 36, 839-848.	3.3	16
31	Glycogen Synthase Kinase 3β and Its Phosphorylated Form (Y216) in the Paraquat-Induced Model of Parkinsonism. Neurotoxicity Research, 2011, 19, 162-171.	2.7	10
32	Cyclic GMP and Nitric Oxide Synthase in Aging and Alzheimer's Disease. Molecular Neurobiology, 2010, 41, 129-137.	4.0	105
33	Systemic administration of lipopolysaccharide induces molecular and morphological alterations in the hippocampus. Brain Research, 2010, 1356, 85-94.	2.2	56
34	Involvement of multiple protein kinases in cPLA ₂ phosphorylation, arachidonic acid release, and cell death in <i>in vivo</i> and <i>in vitro</i> models of 1â€methylâ€4â€phenylpyridiniumâ€induced parkinsonism – the possible key role of PKG. Journal of Neurochemistry, 2009, 110, 307-317.	3.9	30
35	Alzheimer's disease genetic mutation evokes ultrastructural alterations: Correlation to an intracellular Al² deposition and the level of GSK-3l²-P(Y216) phosphorylated form. NeuroToxicology, 2009, 30, 581-588.	3.0	19
36	Effect of N-methyl-D-aspartate (NMDA) receptor antagonists on α-synuclein-evoked neuronal nitric oxide synthase activation in the rat brain. Pharmacological Reports, 2009, 61, 1078-1085.	3.3	20

#	Article	IF	CITATIONS
37	Ultrastructural evidence of amyloid beta-induced autophagy in PC12 cells. Folia Neuropathologica, 2009, 47, 252-8.	1.2	16
38	Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A ₂ in cortical neurons. Journal of Neurochemistry, 2008, 106, 45-55.	3.9	249
39	α-Synuclein enhances secretion and toxicity of amyloid beta peptides in PC12 cells. Neurochemistry International, 2008, 53, 263-269.	3.8	53
40	Molecular mechanism of PC12 cell death evoked by sodium nitroprusside, a nitric oxide donor Acta Biochimica Polonica, 2008, 55, 339-347.	0.5	29
41	Molecular mechanism of PC12 cell death evoked by sodium nitroprusside, a nitric oxide donor. Acta Biochimica Polonica, 2008, 55, 339-47.	0.5	13
42	Role of nitric oxide in the brain during lipopolysaccharide-evoked systemic inflammation. Journal of Neuroscience Research, 2007, 85, 1694-1703.	2.9	66
43	Amyloid beta enhances cytosolic phospholipase A2 level and arachidonic acid release via nitric oxide in APP-transfected PC12 cells Acta Biochimica Polonica, 2007, 54, 611-623.	0.5	32
44	Inhibitor of cyclooxygenase-2 protects against amyloid beta peptide-evoked memory impairment in mice. Pharmacological Reports, 2007, 59, 164-72.	3.3	32
45	Amyloid beta enhances cytosolic phospholipase A2 level and arachidonic acid release via nitric oxide in APP-transfected PC12 cells. Acta Biochimica Polonica, 2007, 54, 611-23.	0.5	17
46	α-Synuclein and its neurotoxic fragment inhibit dopamine uptake into rat striatal synaptosomes. Neurochemistry International, 2006, 49, 407-412.	3.8	40
47	Poly(ADP-ribose) polymerase-1 inhibition protects the brain against systemic inflammation. Neurochemistry International, 2006, 49, 751-755.	3.8	33
48	Alpha-synuclein potentiates Ca2+ influx through voltage-dependent Ca2+ channels. NeuroReport, 2006, 17, 1883-1886.	1.2	69
49	Interplay Between the p53 Tumor Suppressor Protein Family and Cdk5: Novel Therapeutic Approaches for the Treatment of Neurodegenerative Diseases Using Selective Cdk Inhibitors. Molecular Neurobiology, 2006, 34, 27-50.	4.0	12
50	Phosphatidylinositol Transfer Protein Expression Altered by Aging and Parkinson Disease. Cellular and Molecular Neurobiology, 2006, 26, 1151-1164.	3.3	14
51	Preparation of 1-Arylideneamino- and 1-Alkylideneamino-3-phenoxypropan-2-ol N-Oxides — A New Type of Nitrones ChemInform, 2005, 36, no.	0.0	0
52	Preparation of 1â€Arylideneamino―and 1â€Alkylideneaminoâ€3â€phenoxypropanâ€2â€olNâ€Oxides—A New Nitrones. Synthetic Communications, 2005, 35, 1455-1459.	Type of	3
53	Effect of aniracetam on phosphatidylinositol transfer protein alpha in cytosolic and plasma membrane fractions of astrocytes subjected to simulated ischemia in vitro. Pharmacological Reports, 2005, 57, 664-9.	3.3	2
54	Amyloid β-induced Changes in Nitric Oxide Production and Mitochondrial Activity Lead to Apoptosis. Journal of Biological Chemistry, 2004, 279, 50310-50320.	3.4	261

#	Article	IF	CITATIONS
55	Effect of poly(ADP-ribose) polymerase inhibitors on oxidative stress evoked hydroxyl radical level and macromolecules oxidation in cell free system of rat brain cortex. Neuroscience Letters, 2004, 356, 45-48.	2.1	42
56	Age-related alteration of activity and gene expression of endothelial nitric oxide synthase in different parts of the brain in rats. Neuroscience Letters, 2004, 370, 175-179.	2.1	20
57	Poly(ADP-Ribose) Polymerase During Reperfusion After Transient Forebrain Ischemia: Its Role in Brain Edema and Cell Death. Journal of Molecular Neuroscience, 2003, 20, 61-72.	2.3	43
58	P2X7 nucleotide receptor activation enhances IFNÎ ³ -induced type II nitric oxide synthase activity in BV-2 microglial cells. Journal of Neurochemistry, 2003, 87, 344-352.	3.9	89
59	Activation of constitutive nitric oxide synthase(s) and absence of inducible isoform in aged rat brain. Neurochemistry International, 2003, 42, 315-322.	3.8	37
60	Inhibition of N-Methyl- <i>D</i> -Aspartic Acid-Nitric Oxide Synthase in Rat Hippocampal Slices by Ethanol. Journal of Biomedical Science, 2002, 9, 3-9.	7.0	6
61	Activated neutrophils oxidize extracellular proteins of endothelial cells in culture: effect of nitric oxide donors. Biochemical Journal, 2002, 365, 897-902.	3.7	11
62	Alteration of phosphatidylinositol transfer protein during global brain ischemia–reperfusion in gerbils. Neurochemistry International, 2002, 41, 229-236.	3.8	0
63	Inhibition of N-methyl-D-aspartic acid-nitric oxide synthase in rat hippocampal slices by ethanol. Journal of Biomedical Science, 2002, 9, 3-9.	7.0	10
64	Age-Related Changes of GABA-Activated Chloride Channel Properties in Brain Cortex Synaptic Plasma Membrane: Evidence for Phospholipase Involvement. Journal of Neurochemistry, 2002, 63, 1522-1528.	3.9	8
65	Effects of aging and amyloid-beta peptides on choline acetyltransferase activity in rat brain. Neurochemical Research, 2002, 27, 277-281.	3.3	29
66	Effect of spinal cord compression on cyclic 3′,5′-guanosine monophosphate in the white matter columns of rabbit. Neurochemistry International, 2001, 39, 275-282.	3.8	5
67	Aggregated beta amyloid peptide 1-40 decreases Ca2+- and cholinergic receptor-mediated phosphoinositide degradation by alteration of membrane and cytosolic phospholipase C in brain cortex. Neurochemical Research, 2000, 25, 189-196.	3.3	8
68	Alteration of phosphoinositide degradation by cytosolic and membrane-bound phospholipases after forebrain ischemia-reperfusion in gerbil: effects of amyloid beta peptide. Neurochemical Research, 1999, 24, 1277-1284.	3.3	4
69	Amyloid β peptide 25–35 modulates hydrolysis of phosphoinositides by membrane phospholipase(s) C of adult brain cortex. Journal of Molecular Neuroscience, 1999, 12, 101-109.	2.3	18
70	NMDA receptor-dependent nitric oxide and cGMP synthesis in brain hemispheres and cerebellum during reperfusion after transient forebrain ischemia in gerbils: Effect of 7-nitroindazole. Journal of Neuroscience Research, 1998, 54, 681-690.	2.9	32
71	Aging modulates nitric oxide synthesis and cGMP levels in hippocampus and cerebellum. Molecular and Chemical Neuropathology, 1998, 35, 77-95.	1.0	86
72	Arachidonate transport through the bloodâ€retina and bloodâ€brain barrier of the rat after reperfusion of varying duration following complete cerebral ischemia. International Journal of Developmental Neuroscience, 1998, 16, 103-113.	1.6	6

JOANNA B STROSZNAJDER

#	Article	IF	CITATIONS
73	Regulation of phosphatidylethanolamine degradation by enzyme(s) of subcellular fractions from cerebral cortex. Neurochemical Research, 1997, 22, 1199-1204.	3.3	2
74	Arachidonate transport through the blood-retina and blood-brain barrier of the rat during aging. Neuroscience Letters, 1996, 209, 145-148.	2.1	12
75	Amyloid <i>β</i> 1-42 deposits do not lead to Alzheimer's neuritic plaques in aged dogs. Biochemical Journal, 1996, 313, 575-580.	3.7	65
76	Nitric oxide responsible for NMDA receptor-evoked inhibition of arachidonic acid incorporation into lipids of brain membrane. Molecular and Chemical Neuropathology, 1996, 29, 79-92.	1.0	7
77	Aging modulates calcium-dependent phosphatidylinositol degradation by cerebral cortex synaptic plasma membrane phospholipases. Molecular and Chemical Neuropathology, 1994, 21, 95-107.	1.0	10
78	Serotonin, a potent modulator of arachidonic acid turnover, interaction with glutamatergic receptor in brain cortex. Neurochemistry International, 1994, 25, 193-199.	3.8	18
79	Modulatory action of arachidonic acid on GABAA/chloride channel receptor function in adult and aged brain cortex membranes. Neurochemistry International, 1993, 23, 261-267.	3.8	19
80	Carbachol-Stimulated Release of Arachidonic Acid and Eicosanoids from Brain Cortex Synaptoneurosome Lipids of Adult and Aged Rats. Advances in Experimental Medicine and Biology, 1992, 318, 251-258.	1.6	10
81	Ca2+-Independent, Ca2+-Dependent, and Carbachol- Mediated Arachidonic Acid Release from Rat Brain Cortex Membrane. Journal of Neurochemistry, 1991, 57, 1198-1206.	3.9	32
82	Docichol alters GABA uptake and high affinity binding of agonist to rat brain synaptic plasma membranes. Molecular and Chemical Neuropathology, 1989, 11, 77-86.	1.0	4
83	Stimulation of phosphoinositide degradation and phosphatidylinositol-4-phosphate phosphorylation by GTP exclusively in plasma membrane of rat brain. Neurochemical Research, 1989, 14, 717-723.	3.3	16
84	Prolonged ischemia differently affects phospholipase C acting against phosphatidylinositol and phosphatidylinositol 4,5-bisphosphate in brain subsynaptosomal fraction. FEBS Letters, 1989, 257, 110-112.	2.8	6
85	Lipids as Effectors and Mediators in Growth Control of Ascites Tumor Cells. , 1988, , 475-483.		1
86	Phosphatidylinositol degradation in ischemic brain specifically activated by synaptosomal enzymes. FEBS Letters, 1987, 216, 57-61.	2.8	6
87	Effects of Cerebral Ischemia on [3H]Inositol Lipids and [3H]Inositol Phosphates of Gerbil Brain and Subcellular Fractions. Journal of Neurochemistry, 1987, 48, 943-948.	3.9	33
88	Diacylglycerol kinase and lipase activities in rat brain subcellular fractions. Neurochemistry International, 1986, 8, 213-221.	3.8	15
89	Modification of GABA and calcium uptake by lipids in synaptosomes from normoxic and ischemic brain. Neurochemistry International, 1986, 8, 59-66.	3.8	13
90	Effect of hypoglycemia on the brain free fatty acid level and the uptake of fatty acids by phospholipids. Neurochemical Research, 1984, 9, 465-476.	3.3	3

JOANNA B STROSZNAJDER

#	Article	IF	CITATIONS
91	Regional differences in the effects of insulin-induced hypoglycemia on phospholipid metabolism of rat brain. Neurochemistry International, 1984, 6, 63-70.	3.8	1
92	Serum Albumin Washing Specifically Enhances Arachidonate Incorporation into Synaptosomal Phosphatidylinositols. Journal of Neurochemistry, 1983, 40, 84-90.	3.9	19
93	Effects of ischemia and severe hypoxia on arachidonic acid uptake by rat brain membranes. Neurochemical Pathology, 1983, 1, 163-170.	1.1	5
94	Activation of Ethanolamine Phospholipase A2in Brain During Ischemia. Journal of Neurochemistry, 1982, 39, 1111-1116.	3.9	186
95	Effects of acute hypoxia on incorporation of [1-14C]arachidonic acid into glycerolipids of rat brain. Neurochemical Research, 1981, 6, 767-774.	3.3	14
96	Metabolism of oleoyl-CoA in rat brain synaptosomes. Neurochemical Research, 1981, 6, 1231-1240.	3.3	5
97	Effects of postdecapitative ischemia and hypoxia on the phosphoglyceride acyl groups of rat brain membranes. Neurochemical Research, 1980, 5, 1211-1219.	3.3	28
98	Incorporation of linoleic acid into membrane glycerophospholipids from rat brain submitted to ischemia and hypoxia. Neurochemical Research, 1980, 5, 1265-1277.	3.3	8
99	Über die Bildung der Plasmalogene zur Zeit der Myelinisierung bei der Ratte, VI. Einbau von14C,32P-markiertemO-(1-Alkyl-sn-glycerin-3-phosphoryl)Ĥhanolamin zu verschiedenen Zeiten. Honne-Seyler's Zeitschrift FÃ1/4r Physiologische Chemie, 1973, 354, 697-704	1.6	7

Hoppe-Seyler's Zeitschrift Für Physiologische Chemie, 1973, 354, 697-704.