Ji-Jing Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5369187/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic and Optical Field Multiâ€Assisted Li–O ₂ Batteries with Ultrahigh Energy Efficiency and Cycle Stability. Advanced Materials, 2022, 34, e2104792.	11.1	59
2	Nature-inspired Three-dimensional Au/Spinach as a Binder-free and Self-standing Cathode for High-performance Li-O2 Batteries. Chemical Research in Chinese Universities, 2022, 38, 200-208.	1.3	7
3	A TEMPO-grafted multi-functional cathode with strong anchoring ability towards redox mediators for high energy efficiency Li-O2 batteries. Energy Storage Materials, 2022, 45, 191-200.	9.5	14
4	Oxygen Vacancyâ€Mediated Growth of Amorphous Discharge Products toward an Ultrawide Band Lightâ€Assisted Li–O ₂ Batteries. Advanced Materials, 2022, 34, e2107826.	11.1	51
5	Highly Stable Co Single Atom Confined in Hierarchical Carbon Molecular Sieve as Efficient Electrocatalysts in Metal–Air Batteries. Advanced Energy Materials, 2022, 12, .	10.2	44
6	Fundamental Understanding and Construction of Solidâ€State Liâ^'Air Batteries. Small Science, 2022, 2, .	5.8	17
7	Metal–Organic Frameworks Derived Electrolytes Build Multiple Wetting Interfaces for Integrated Solid‧tate Lithium–Oxygen Battery. Advanced Functional Materials, 2022, 32, .	7.8	30
8	Resolving the cathode passivation of lithium–oxygen batteries with an amination SiO2/TiO2 functional separator. Journal of Power Sources, 2021, 483, 229180.	4.0	6
9	Strategies with Functional Materials in Tackling Instability Challenges of Non-aqueous Lithium-Oxygen Batteries. Chemical Research in Chinese Universities, 2021, 37, 232-245.	1.3	7
10	Enabling shuttle-free of high concentration redox mediators by metal organic framework derivatives in lithium–oxygen batteries. Journal of Power Sources, 2021, 492, 229575.	4.0	7
11	A highly stable and flexible zeolite electrolyte solid-state Li–air battery. Nature, 2021, 592, 551-557.	13.7	306
12	Driving Oxygen Electrochemistry in Lithium–Oxygen Battery by Local Surface Plasmon Resonance. ACS Applied Materials & Interfaces, 2021, 13, 26123-26133.	4.0	17
13	A Renewable Lightâ€Promoted Flexible Liâ€CO ₂ Battery with Ultrahigh Energy Efficiency of 97.9%. Small, 2021, 17, e2100642.	5.2	27
14	Bioinspired Fabrication of Strong Self-Standing Egg-Sugarcane Cathodes for Rechargeable Lithium–Oxygen Batteries. CCS Chemistry, 2021, 3, 1764-1774.	4.6	12
15	Perovskite Quantum Dots Encapsulated in a Mesoporous Metal–Organic Framework as Synergistic Photocathode Materials. Journal of the American Chemical Society, 2021, 143, 14253-14260.	6.6	118
16	Localized surface plasmon resonance enhanced electrochemical kinetics and product selectivity in aprotic Li–O2 batteries. Energy Storage Materials, 2021, 42, 618-627.	9.5	17
17	Bio-inspired design of strong self-standing cathode toward highly stable reversible Li-CO2 batteries. Chemical Engineering Journal, 2021, 426, 131101.	6.6	6
18	A Bifunctional Photoâ€Assisted Li–O ₂ Battery Based on a Hierarchical Heterostructured Cathode. Advanced Materials, 2020, 32, e1907098.	11.1	105

JI-JING XU

#	Article	IF	CITATIONS
19	Porous Materials Applied in Nonaqueous Li–O ₂ Batteries: Status and Perspectives. Advanced Materials, 2020, 32, e2002559.	11.1	115
20	Facile Route to Constructing Ternary Nanoalloy Bifunctional Oxygen Cathode for Metal-Air Batteries. Chemical Research in Chinese Universities, 2020, 36, 1153-1160.	1.3	5
21	Tuning lithium-peroxide formation and decomposition routes with single-atom catalysts for lithium–oxygen batteries. Nature Communications, 2020, 11, 2191.	5.8	181
22	Light/Electricity Energy Conversion and Storage for a Hierarchical Porous In ₂ S ₃ @CNT/SS Cathode towards a Flexible Li O ₂ Battery. Angewandte Chemie - International Edition, 2020, 59, 19518-19524.	7.2	94
23	Light/Electricity Energy Conversion and Storage for a Hierarchical Porous In ₂ S ₃ @CNT/SS Cathode towards a Flexible Li O ₂ Battery. Angewandte Chemie, 2020, 132, 19686-19692.	1.6	13
24	<i>In situ</i> fabricated photo-electro-catalytic hybrid cathode for light-assisted lithium–CO ₂ batteries. Journal of Materials Chemistry A, 2020, 8, 14799-14806.	5.2	33
25	Process for a Free-Standing and Stable All-Metal Structure for Symmetrical Lithium–Oxygen Batteries. ACS Nano, 2020, 14, 3281-3289.	7.3	51
26	Stabilizing electrochemical Li–O ₂ batteries with a metal-based cathode of PdNi on Ni nonwoven fabric. Nanoscale, 2019, 11, 11513-11520.	2.8	7
27	Realizing Formation and Decomposition of Li2O2 on Its Own Surface with a Highly Dispersed Catalyst for High Round-Trip Efficiency Li-O2 Batteries. IScience, 2019, 14, 36-46.	1.9	28
28	Photoinduced decoration of NiO nanosheets/Ni foam with Pd nanoparticles towards a carbon-free and self-standing cathode for a lithium–oxygen battery with a low overpotential and long cycle life. Materials Horizons, 2018, 5, 298-302.	6.4	27
29	Bloodâ€Capillaryâ€Inspired, Freeâ€Standing, Flexible, and Lowâ€Cost Superâ€Hydrophobic Nâ€CNTs@SS Cathoc for Highâ€Capacity, Highâ€Rate, and Stable Liâ€Air Batteries. Advanced Energy Materials, 2018, 8, 1702242.	les 10.2	108
30	In Situ Construction of Stable Tissueâ€Directed/Reinforced Bifunctional Separator/Protection Film on Lithium Anode for Lithium–Oxygen Batteries. Advanced Materials, 2017, 29, 1606552.	11.1	162
31	Highâ€Performance Integrated Selfâ€Package Flexible Li–O ₂ Battery Based on Stable Composite Anode and Flexible Gas Diffusion Layer. Advanced Materials, 2017, 29, 1700378.	11.1	72
32	Nanoengineered Ultralight and Robust All-Metal Cathode for High-Capacity, Stable Lithium–Oxygen Batteries. ACS Central Science, 2017, 3, 598-604.	5.3	109
33	Recent Progress in Electrocatalyst for Liâ€O ₂ Batteries. Advanced Energy Materials, 2017, 7, 1700875.	10.2	235
34	Li–air batteries: Decouple to stabilize. Nature Energy, 2017, 2, .	19.8	46
35	CeO2@NiCo2O4 nanowire arrays on carbon textiles as high performance cathode for Li-O2 batteries. Science China Chemistry, 2017, 60, 1540-1545.	4.2	24
36	Ultrathin, Lightweight, and Wearable Liâ€O ₂ Battery with High Robustness and Gravimetric/Volumetric Energy Density. Small, 2017, 13, 1602952.	5.2	69

Јі-Јімс Хи

#	Article	IF	CITATIONS
37	Design and Preparation of Advanced Materials for Lithium-Air Batteries. Acta Chimica Sinica, 2017, 75, 137.	0.5	2
38	Cableâ€Type Water‧urvivable Flexible Liâ€O ₂ Battery. Small, 2016, 12, 3101-3105.	5.2	102
39	Cathode Surfaceâ€Induced, Solvationâ€Mediated, Micrometerâ€5ized Li ₂ O ₂ Cycling for Li–O ₂ Batteries. Advanced Materials, 2016, 28, 9620-9628.	11.1	232
40	Growth of Ruâ€Modified Co ₃ O ₄ Nanosheets on Carbon Textiles toward Flexible and Efficient Cathodes for Flexible Li–O ₂ Batteries. Particle and Particle Systems Characterization, 2016, 33, 500-505.	1.2	33
41	Macroporous Interconnected Hollow Carbon Nanofibers Inspired by Goldenâ€Toad Eggs toward a Binderâ€Free, Highâ€Rate, and Flexible Electrode. Advanced Materials, 2016, 28, 7494-7500.	11.1	162
42	Flexible and Foldable Li–O ₂ Battery Based on Paperâ€Ink Cathode. Advanced Materials, 2015, 27, 8095-8101.	11.1	117
43	Artificial Protection Film on Lithium Metal Anode toward Longâ€Cycleâ€Life Lithium–Oxygen Batteries. Advanced Materials, 2015, 27, 5241-5247.	11.1	439
44	Recent Progress on Stability Enhancement for Cathode in Rechargeable Nonâ€Aqueous Lithiumâ€Oxygen Battery. Advanced Energy Materials, 2015, 5, 1500633.	10.2	128
45	Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2 batteries. Nano Research, 2015, 8, 576-583.	5.8	65
46	Flexible lithium–oxygen battery based on a recoverable cathode. Nature Communications, 2015, 6, 7892.	5.8	279
47	Synthesis and Properties Investigation of Non-equivalent Substituted W-Type Hexaferrite. Journal of Superconductivity and Novel Magnetism, 2014, 27, 411-420.	0.8	11
48	Direct electrodeposition of cobalt oxide nanosheets on carbon paper as free-standing cathode for Li–O ₂ battery. Journal of Materials Chemistry A, 2014, 2, 6081-6085.	5.2	83
49	Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chemical Society Reviews, 2014, 43, 7746-7786.	18.7	1,264
50	3D ordered macroporous LaFeO3 as efficient electrocatalyst for Li–O2 batteries with enhanced rate capability and cyclic performance. Energy and Environmental Science, 2014, 7, 2213.	15.6	339
51	Electromagnetic properties and microwave absorption enhancement of Ba0.85RE0.15Co2Fe16O27-polyaniline composites: RE = Gd, Tb, Ho. Colloid and Polymer Science, 2014, 2173-2183.	292,	20
52	Electrostatic Induced Stretch Growth of Homogeneous β-Ni(OH)2 on Graphene with Enhanced High-Rate Cycling for Supercapacitors. Scientific Reports, 2014, 4, 3669.	1.6	222
53	Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nature Communications, 2013, 4, 2438.	5.8	519
54	Synthesis of Perovskiteâ€Based Porous La _{0.75} Sr _{0.25} MnO ₃ Nanotubes as a Highly Efficient Electrocatalyst for Rechargeable Lithium–Oxygen Batteries. Angewandte Chemie - International Edition, 2013, 52, 3887-3890.	7.2	482

JI-JING XU

#	Article	IF	CITATIONS
55	Homogeneous CoO on Graphene for Binderâ€Free and Ultralongâ€Life Lithium Ion Batteries. Advanced Functional Materials, 2013, 23, 4345-4353.	7.8	333
56	Batteries: Homogeneous CoO on Graphene for Binderâ€Free and Ultralong‣ife Lithium Ion Batteries (Adv. Funct. Mater. 35/2013). Advanced Functional Materials, 2013, 23, 4274-4274.	7.8	17
57	A stable sulfone based electrolyte for high performance rechargeable Li–O2 batteries. Chemical Communications, 2012, 48, 11674.	2.2	99
58	Lithium Ion Batteries: Graphene Oxide Gelâ€Derived, Freeâ€Standing, Hierarchically Porous Carbon for Highâ€Capacity and Highâ€Rate Rechargeable Liâ€O ₂ Batteries (Adv. Funct. Mater. 17/2012). Advanced Functional Materials, 2012, 22, 3745-3745.	7.8	2
59	High aspect ratio γ-MnOOH nanowires for high performance rechargeable nonaqueous lithium–oxygen batteries. Chemical Communications, 2012, 48, 7598.	2.2	109
60	α-MnO2 hollow clews for rechargeable Li-air batteries with improved cyclability. Science Bulletin, 2012, 57, 4210-4214.	1.7	19
61	Graphene Oxide Gelâ€Derived, Freeâ€Standing, Hierarchically Porous Carbon for Highâ€Capacity and Highâ€Rate Rechargeable Liâ€O ₂ Batteries. Advanced Functional Materials, 2012, 22, 3699-3705.	7.8	390
62	Novel DMSO-based electrolyte for high performance rechargeable Li–O2 batteries. Chemical Communications, 2012, 48, 6948.	2.2	281
63	Effect of different rare-earth elements substitution on microstructure and microwave absorbing properties of Ba0.9RE0.1Co2Fe16O27 (RE=La, Nd, Sm) particles. Journal of Magnetism and Magnetic Materials, 2012, 324, 1209-1213.	1.0	60
64	Structural, dielectric and magnetic properties of Nd-doped Co2Z-type hexaferrites. Journal of Alloys and Compounds, 2011, 509, 4290-4294.	2.8	49
65	Influence of Sm-substitution on structure and electromagnetic properties of Ba3â^'xSmxCo2Fe24O41 powders. Journal of Magnetism and Magnetic Materials, 2011, 323, 156-161.	1.0	14
66	Preparation and application of 4-amino-4′-nitro azobenzene modified chitosan as a selective adsorbent for the determination of Au(III) and Pd(II). Mikrochimica Acta, 2010, 168, 99-105.	2.5	40
67	Reply to the Comments on "Preparation and application of 4-amino-4′-nitroazobenzene modified chitosan as a selective adsorbent for the determination of Au(III) and Pd(II)― Mikrochimica Acta, 2010, 170, 189-189.	2.5	0
68	Azeotropic distillation-assisted preparation of nanoscale gamma-alumina powder from waste oil shale ash. Chemical Engineering Journal, 2010, 157, 67-72.	6.6	13
69	Preparation of nano-sized α-Al2O3 from oil shale ash. Energy, 2010, 35, 45-49.	4.5	35
70	Preparation and luminescent properties of CaAl2O4:Eu3+,R+ (R=Li, Na, K) phosphors. Journal of Rare Earths, 2010, 28, 22-25.	2.5	34
71	Influence of Nd3+ substitution on the microstructure and electromagnetic properties of barium W-type hexaferrite. Journal of Alloys and Compounds, 2010, 490, 552-556.	2.8	100
72	Synthesis of ultrafine silica powders based on oil shale ash by fluidized bed drying of wet-gel slurry. Fuel, 2009, 88, 1223-1227.	3.4	17

JI-JING XU

#	Article	IF	CITATIONS
73	Preparation and properties of silica nanoparticles from oil shale ash. Powder Technology, 2009, 191, 47-51.	2.1	43
74	Electromagnetic and microwave absorbing properties of Co2Z-type hexaferrites doped with La3+. Journal of Magnetism and Magnetic Materials, 2009, 321, 3231-3235.	1.0	78