Paul Awoyera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5369033/publications.pdf

Version: 2024-02-01

91 papers

2,303 citations

218381 26 h-index 253896 43 g-index

95 all docs 95
docs citations

95 times ranked 1274 citing authors

#	Article	IF	CITATIONS
1	Impact Resistance and Strength Development of Fly Ash Based Self-compacting Concrete. Silicon, 2022, 14, 481-492.	1.8	10
2	Structural Performance of Biaxial Geogrid Reinforced Concrete Slab. International Journal of Civil Engineering, 2022, 20, 349-359.	0.9	10
3	Modeling Temperature of Fire-Damaged Reinforced Concrete Buildings Based on Nondestructive Testing and Gene Algorithm Techniques. Fire Technology, 2022, 58, 941-957.	1.5	2
4	Optimization of the Curved Metal Damper to Improve Structural Energy Dissipation Capacity. Buildings, 2022, 12, 67.	1.4	12
5	Engineering performance of metakaolin based concrete. Cleaner Engineering and Technology, 2022, 6, 100383.	2.1	15
6	Influence of fly ash in physical and mechanical properties of recycled aggregate concrete., 2022,, 25-37.		1
7	The use of slags in recycled aggregate concrete. , 2022, , 145-170.		3
8	Upcycling CO2 for enhanced performance of recycled aggregate concrete and modeling of properties. , 2022, , 349-364.		0
9	Overview on environmental impact of recycled aggregate concrete incorporating pozzolans or fillers., 2022,, 435-444.		O
10	Comparison of thermal performance of steel moment and eccentrically braced frames. Journal of Building Engineering, 2022, 49, 104052.	1.6	2
11	Modelling the edge breakout shear capacity of single anchors using gene expression programming. Neural Computing and Applications, 2022, 34, 9635-9646.	3.2	1
12	Experimental Findings and Validation on Torsional Behaviour of Fibre-Reinforced Concrete Beams: A Review. Polymers, 2022, 14, 1171.	2.0	9
13	Thermal insulation and mechanical characteristics of cement mortar reinforced with mineral wool and rice straw fibers. Journal of Building Engineering, 2022, 53, 104568.	1.6	15
14	Strength and Durability Assessments of Induction Furnace Slag - Quarry Dust -Based High Performance Self - Compacting Concrete. Civil and Environmental Engineering, 2022, 18, 1-16.	0.4	3
15	Comparative Study on Mechanical Properties of Concrete Blended with Costus englerianus Bagasse Ash and Bagasse Fibre as Partial Replacement for Lime and Cement. Advances in Civil Engineering, 2022, 2022, 1-8.	0.4	7
16	Development of Fibre-Reinforced Cementitious Mortar with Mineral Wool and Coconut Fibre. Materials, 2022, 15, 4520.	1.3	5
17	Durability Phenomenon in Manufactured Sand Concrete: Effects of Zinc Oxide and Alcofine on Behaviour. Silicon, 2021, 13, 1079-1085.	1.8	22
18	Shear capacity prediction of slender reinforced concrete structures with steel fibers using machine learning. Engineering Structures, 2021, 227, 111470.	2.6	53

#	Article	IF	CITATIONS
19	Durability Properties of Self-compacting Concrete Made With Recycled Aggregate. Silicon, 2021, 13, 2727-2735.	1.8	15
20	Cleaner production of self-compacting concrete with selected industrial rejects-an overview. Silicon, 2021, 13, 2809-2820.	1.8	27
21	Effects of calcined clay on the engineering properties of cementitious mortars. Materials Today: Proceedings, 2021, 39, 110-113.	0.9	6
22	Physical, strength, and microscale properties of plastic fiber-reinforced concrete containing fine ceramics particles. Materialia, 2021, 15, 100970.	1.3	25
23	Strength characterisation of self cured concrete using Al tools. Materials Today: Proceedings, 2021, 39, 839-848.	0.9	3
24	Prediction of California Bearing Ratio of Subgrade Soils Using Artificial Neural Network Principles. Lecture Notes in Networks and Systems, 2021, , 133-146.	0.5	4
25	Plastic fiber-strengthened interlocking bricks for load bearing applications. Innovative Infrastructure Solutions, 2021, 6, 1.	1.1	9
26	Optimization of Mix Proportions for Novel Dry Stack Interlocking Concrete Blocks Using ANN. Advances in Civil Engineering, 2021, 2021, 1-15.	0.4	5
27	Production of lightweight mortar using recycled waste papers and pulverized ceramics: Mechanical and microscale properties. Journal of Building Engineering, 2021, 39, 102233.	1.6	3
28	A review of residual strength properties of normal and high strength concrete exposed to elevated temperatures: Impact of materials modification on behaviour of concrete composite. Construction and Building Materials, 2021, 296, 123448.	3.2	62
29	Performance of Pier-to-Pier Cap Connections of Integral Bridges under Thermal and Seismic Loads. Advances in Civil Engineering, 2021, 2021, 1-16.	0.4	0
30	A Study on the Effect of Hollow Tubular Flange Sections on the Behavior of Cold-Formed Steel Built-Up Beams. Advances in Civil Engineering, 2021, 2021, 1-9.	0.4	1
31	Utilization of Corn Cob Ash as Fine Aggregate and Ground Granulated Blast Furnace Slag as Cementitious Material in Concrete. Buildings, 2021, 11, 422.	1.4	32
32	Estimating optimum parameters of a new SMA damper under different earthquake ground motions. Structures, 2021, 33, 2700-2712.	1.7	12
33	Water absorption, strength and microscale properties of interlocking concrete blocks made with plastic fibre and ceramic aggregates. Case Studies in Construction Materials, 2021, 15, e00677.	0.8	10
34	Effect of Wheat Straw Ash on Fresh and Hardened Concrete Reinforced with Jute Fiber. Advances in Civil Engineering, 2021, 2021, 1-11.	0.4	14
35	Experimental Study on Engineering Properties of Cement Concrete Reinforced with Nylon and Jute Fibers. Buildings, 2021, 11, 454.	1.4	26
36	Synergic effect of metakaolin and groundnut shell ash on the behavior of fly ash-based self-compacting geopolymer concrete. Construction and Building Materials, 2021, 311, 125327.	3.2	59

#	Article	IF	Citations
37	Synergic effect of millet husk ash and wheat straw ash on the fresh and hardened properties of Metakaolin-based self-compacting geopolymer concrete. Case Studies in Construction Materials, 2021, 15, e00729.	0.8	11
38	Modeling flexural overstrength factor for steel beams using heuristic soft-computing methods. Structures, 2021, 34, 3238-3246.	1.7	3
39	Structural Retrofitting of Corroded Reinforced Concrete Beams Using Bamboo Fiber Laminate. Materials, 2021, 14, 6711.	1.3	13
40	Mechanical Properties of Concrete Incorporating Rice Husk Ash and Wheat Straw Ash as Ternary Cementitious Material. Advances in Civil Engineering, 2021, 2021, 1-13.	0.4	10
41	A statistical approach to assess the schedule delays and risks in Indian construction industry. International Journal of Construction Management, 2020, 20, 450-461.	2.2	26
42	Alkali activated binders: Challenges and opportunities. Materials Today: Proceedings, 2020, 27, 40-43.	0.9	52
43	Green concrete: A review of recent developments. Materials Today: Proceedings, 2020, 27, 54-58.	0.9	109
44	Fire resistance and thermal insulation properties of foamed concrete incorporating pulverized ceramics and mineral admixtures. Asian Journal of Civil Engineering, 2020, 21, 147-156.	0.8	16
45	New Light Weight Mortar for Structural Application: Assessment of Porosity, Strength and Morphology Properties. Learning and Analytics in Intelligent Systems, 2020, , 59-65.	0.5	3
46	Lightweight Self-Compacting Concrete Incorporating Industrial Rejects and Mineral Admixtures: Strength and Durability Assessment. Silicon, 2020, 12, 1779-1785.	1.8	20
47	Experimental Study on Performance of Hardened Concrete Using Nano Materials. KSCE Journal of Civil Engineering, 2020, 24, 596-602.	0.9	37
48	Phase change materials in concrete: An overview of properties. Materials Today: Proceedings, 2020, 27, 391-395.	0.9	33
49	Enhancing the Strength Properties of High-Performance Concrete Using Ternary Blended Cement: OPC, Nano-Silica, Bagasse Ash. Silicon, 2020, 12, 1949-1956.	1.8	43
50	Foamed concrete incorporating mineral admixtures and pulverized ceramics: Effect of phase change and mineralogy on strength characteristics. Construction and Building Materials, 2020, 234, 117434.	3.2	23
51	Fresh and Hardened Properties of Concrete Incorporating Binary Blend of Metakaolin and Ground Granulated Blast Furnace Slag as Supplementary Cementitious Material. Advances in Civil Engineering, 2020, 2020, 1-8.	0.4	32
52	Rheological, Mineralogical and Strength Variability of Concrete due to Construction Water Impurities. International Journal of Engineering Research in Africa, 2020, 48, 78-91.	0.7	8
53	Sustainable composite development: Novel use of human hair as fiber in concrete. Case Studies in Construction Materials, 2020, 13, e00412.	0.8	21
54	Implementation of new elements and material models in OpenSees software to account for post-earthquacke fire damage. Structures, 2020, 27, 1777-1785.	1.7	5

#	Article	IF	CITATIONS
55	A Review of the Engineering Properties of Metakaolin Based Concrete: Towards Combatting Chloride Attack in Coastal/Marine Structures. Advances in Civil Engineering, 2020, 2020, 1-13.	0.4	23
56	Mechanical and durability properties of recycled aggregate concrete with ternary binder system and optimized mix proportion. Journal of Materials Research and Technology, 2020, 9, 6521-6532.	2.6	35
57	Fresh properties of self-compacting concrete incorporating electric arc furnace oxidizing slag (EAFOS) as coarse aggregate. SN Applied Sciences, 2020, 2, 1.	1.5	9
58	Estimating strength properties of geopolymer self-compacting concrete using machine learning techniques. Journal of Materials Research and Technology, 2020, 9, 9016-9028.	2.6	116
59	Permeability properties of lightweight self-consolidating concrete made with coconut shell aggregate. Journal of Materials Research and Technology, 2020, 9, 3547-3557.	2.6	50
60	Reinforced concrete deterioration caused by contaminated construction water: An overview. Engineering Failure Analysis, 2020, 116, 104715.	1.8	9
61	Plastic wastes to construction products: Status, limitations and future perspective. Case Studies in Construction Materials, 2020, 12, e00330.	0.8	128
62	Numerical simulation and specification provisions for buckling characteristics of a built-up steel column section subjected to axial loading. Engineering Structures, 2020, 207, 110256.	2.6	20
63	Model Development for Strength Properties of Laterized Concrete Using Artificial Neural Network Principles. Advances in Intelligent Systems and Computing, 2020, , 197-207.	0.5	16
64	Models for Predictions of Mechanical Properties of Low-Density Self-compacting Concrete Prepared from Mineral Admixtures and Pumice Stone. Advances in Intelligent Systems and Computing, 2020, , 677-690.	0.5	18
65	Structural distress in glass fibre-reinforced concrete under loading and exposure to aggressive environments. Construction and Building Materials, 2019, 197, 862-870.	3.2	48
66	Overview of trends in the application of waste materials in self-compacting concrete production. SN Applied Sciences, 2019, 1, 1.	1.5	53
67	Experimental and numerical analysis of large-scale bamboo-reinforced concrete beams containing crushed sand. Innovative Infrastructure Solutions, 2019, 4, 1.	1.1	7
68	A critical review on application of alkali activated slag as a sustainable composite binder. Case Studies in Construction Materials, 2019, 11, e00268.	0.8	82
69	Structural retrofitting of corroded fly ash based concrete beams with fibres to improve bending characteristics. Australian Journal of Structural Engineering, 2019, 20, 198-203.	0.4	21
70	Role of recycling fine materials as filler for improving performance of concrete - a review. Australian Journal of Civil Engineering, 2019, 17, 85-95.	0.6	70
71	Effect of Marble Dust and Basalt Fiber on the Energy Absorbance of Concrete Measured through Impact Loading Method. Current Materials Science, 2019, 13, .	0.2	0
72	Effect of mineral admixtures on early age properties of high performance concrete. IOP Conference Series: Materials Science and Engineering, 2019, 561, 012067.	0.3	14

#	Article	IF	Citations
73	Filler-Ability of Highly Active Metakaolin for Improving Morphology and Strength Characteristics of Recycled Aggregate Concrete. Silicon, 2019, 11, 1971-1978.	1.8	20
74	Predictive models for determination of compressive and split-tensile strengths of steel slag aggregate concrete. Materials Research Innovations, 2018, 22, 287-293.	1.0	16
75	Characterization of ceramic waste aggregate concrete. HBRC Journal, 2018, 14, 282-287.	0.2	114
76	Microstructural characteristics, porosity and strength development in ceramic-laterized concrete. Cement and Concrete Composites, 2018, 86, 224-237.	4.6	63
77	Stabilization Effect of Aluminum Dross on Tropical Lateritic Soil. International Journal of Engineering Research in Africa, 2018, 39, 86-96.	0.7	8
78	Beneficiated pozzolans as cement replacement in bamboo-reinforced concrete: the intrinsic characteristics. Innovative Infrastructure Solutions, 2018, 3, 1.	1.1	9
79	Using silica mineral waste as aggregate in a green high strength concrete: workability, strength, failure mode, and morphology assessment. Australian Journal of Civil Engineering, 2018, 16, 122-128.	0.6	32
80	Curing, thermal resistance and bending behaviour of laterised concrete containing ceramic wastes. Cogent Engineering, 2018, 5, 1485476.	1.1	7
81	Hydration mechanism and strength properties of recycled aggregate concrete made using ceramic blended cement. Cogent Engineering, 2017, 4, 1282667.	1.1	25
82	Suitability of mortars produced using laterite and ceramic wastes: Mechanical and microscale analysis. Construction and Building Materials, 2017, 148, 195-203.	3.2	65
83	Low carbon building: Experimental insight on the use of fly ash and glass fibre for making geopolymer concrete. Sustainable Environment Research, 2017, 27, 146-153.	2.1	86
84	Professional methods of assessments in architectural design projects: A focus on the relevant parametric measures in selected Nigerian universities. Cogent Social Sciences, 2017, 3, 1328793.	0.5	3
85	Benefits of Using Ceramic Tile Waste For Making Sustainable Concrete. Journal of Solid Waste Technology and Management, 2017, 43, 233-241.	0.2	7
86	PERFORMANCE OF STEEL SLAG AGGREGATE CONCRETE WITH VARIED WATER- CEMENT RATIO. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.3	10
87	Green concrete production with ceramic wastes and laterite. Construction and Building Materials, 2016, 117, 29-36.	3.2	92
88	Suitability of <i>Cordia millenii</i> Ash Blended Cement in Concrete Production. International Journal of Engineering Research in Africa, 2016, 22, 59-67.	0.7	10
89	Thermal and Mechanical Characterization of Microencapsulated Phase Change Material in Cementitious Composites. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 0, , 1.	1.0	6
90	Engineering Properties of Concrete with a Ternary Blend of Fly Ash, Wheat Straw Ash, and Maize Cob Ash. International Journal of Engineering Research in Africa, 0, 54, 43-55.	0.7	10

ARTICLE IF CITATIONS

91 Impact resistance of high strength chopped basalt fibre-reinforced concrete., 0,, 240-249.