
Andreas Trumpp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5368972/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Driving differentiation: targeting APA in AML. Blood, 2022, 139, 317-319.	0.6	2
2	Abstract PD9-07: Mdm2 gene amplification in estrogen receptor-positive breast cancer cells is associated with enhanced solid tumor growth and pronounced metastatic potential in humanized tumor mice (HTM) and a poor outcome of patients with luminal breast cancer. Cancer Research, 2022, 82, PD9-07-PD9-07.	0.4	0
3	The proteogenomic subtypes of acute myeloid leukemia. Cancer Cell, 2022, 40, 301-317.e12.	7.7	43
4	Cancer stem cells: The adventurous journey from hematopoietic to leukemic stem cells. Cell, 2022, 185, 1266-1270.	13.5	19
5	<i>mdm2</i> gene amplification is associated with luminal breast cancer progression in humanized <scp>PDX</scp> mice and a worse outcome of estrogen receptor positive disease. International Journal of Cancer, 2022, 150, 1357-1372.	2.3	6
6	Perivascular tenascin C triggers sequential activation of macrophages and endothelial cells to generate a pro-metastatic vascular niche in the lungs. Nature Cancer, 2022, 3, 486-504.	5.7	35
7	CRISPR-Cas9 mediated generation of a conditional poly(A) binding protein nuclear 1 (Pabpn1) mouse model reveals an essential role for hematopoietic stem cells. Scientific Reports, 2022, 12, 7181.	1.6	2
8	Antigen presentation safeguards the integrity of the hematopoietic stem cell pool. Cell Stem Cell, 2022, 29, 760-775.e10.	5.2	29
9	MYCN mediates cysteine addiction and sensitizes neuroblastoma to ferroptosis. Nature Cancer, 2022, 3, 471-485.	5.7	73
10	Abstract 3374: Large-scale single-cell whole transcriptomic analyses reveal distinct malignant phenotypes of CTCs from NSCLC patients. Cancer Research, 2022, 82, 3374-3374.	0.4	1
11	Targeting the Leukemic stem cell protein machinery by inhibition of mitochondrial pyrimidine synthesis. EMBO Molecular Medicine, 2022, 14, .	3.3	2
12	Recent advances in "sickle and niche―research - Tribute to Dr. Paul S Frenette Stem Cell Reports, 2022, 17, 1509-1535.	2.3	8
13	Aggressive PDACs Show Hypomethylation of Repetitive Elements and the Execution of an Intrinsic IFN Program Linked to a Ductal Cell of Origin. Cancer Discovery, 2021, 11, 638-659.	7.7	65
14	Identification and Characterization of Cancer Cells That Initiate Metastases to the Brain and Other Organs. Molecular Cancer Research, 2021, 19, 688-701.	1.5	22
15	An interplay of NOX1-derived ROS and oxygen determines the spermatogonial stem cell self-renewal efficiency under hypoxia. Genes and Development, 2021, 35, 250-260.	2.7	19
16	Analysis of nonleukemic cellular subcompartments reconstructs clonal evolution of acute myeloid leukemia and identifies therapyâ€resistant preleukemic clones. International Journal of Cancer, 2021, 148, 2825-2838.	2.3	5
17	Mouse multipotent progenitor 5 cells are located at the interphase between hematopoietic stem and progenitor cells. Blood, 2021, 137, 3218-3224.	0.6	27
18	Identification of leukemic and pre-leukemic stem cells by clonal tracking from single-cell transcriptomics. Nature Communications, 2021, 12, 1366.	5.8	69

#	Article	IF	CITATIONS
19	Versatile workflow for cell type–resolved transcriptional and epigenetic profiles from cryopreserved human lung. JCI Insight, 2021, 6, .	2.3	8
20	Hotspot DNMT3A mutations in clonal hematopoiesis and acute myeloid leukemia sensitize cells to azacytidine via viral mimicry response. Nature Cancer, 2021, 2, 527-544.	5.7	37
21	Alternative Polyadenylation in Stem Cell Self-Renewal and Differentiation. Trends in Molecular Medicine, 2021, 27, 660-672.	3.5	27
22	Paul S. Frenette (1965–2021). Cell, 2021, 184, 5073-5076.	13.5	1
23	New Insights Into Pancreatic Cancer: Notes from a Virtual Meeting. Gastroenterology, 2021, 161, 785-791.	0.6	5
24	Temporal multi-omics identifies LRG1 as a vascular niche instructor of metastasis. Science Translational Medicine, 2021, 13, eabe6805.	5.8	36
25	Niche derived netrin-1 regulates hematopoietic stem cell dormancy via its receptor neogenin-1. Nature Communications, 2021, 12, 608.	5.8	39
26	Paul S. Frenette (1965–2021). Cell Stem Cell, 2021, 28, 1686-1689.	5.2	0
27	TNF-α-producing macrophages determine subtype identity and prognosis via AP1 enhancer reprogramming in pancreatic cancer. Nature Cancer, 2021, 2, 1185-1203.	5.7	46
28	Single-cell proteo-genomic reference maps of the hematopoietic system enable the purification and massive profiling of precisely defined cell states. Nature Immunology, 2021, 22, 1577-1589.	7.0	76
29	Leukemic Stem Cells of Monocytic AMLs Are Not-Resistant to BCL-2 Inhibition. Blood, 2021, 138, 3469-3469.	0.6	1
30	3071 – HEALTHY AND MALIGNANT HEMATOPOIETIC STEM CELLS ACT AS IMMUNOREGULATORY ANTIGEN PRESENTING CELLS. Experimental Hematology, 2021, 100, S76.	0.2	0
31	Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nature Cell Biology, 2020, 22, 38-48.	4.6	521
32	Adult blood stem cell localization reflects the abundance of reported bone marrow niche cell types and their combinations. Blood, 2020, 136, 2296-2307.	0.6	63
33	Survival differences and associated molecular signatures of DNMT3A-mutant acute myeloid leukemia patients. Scientific Reports, 2020, 10, 12761.	1.6	16
34	Quantitative proteomics reveals specific metabolic features of acute myeloid leukemia stem cells. Blood, 2020, 136, 1507-1519.	0.6	57
35	Metastasis-initiating cells induce and exploit a fibroblast niche to fuel malignant colonization of the lungs. Nature Communications, 2020, 11, 1494.	5.8	115
36	Differential Alternative Polyadenylation Landscapes Mediate Hematopoietic Stem Cell Activation and Regulate Glutamine Metabolism. Cell Stem Cell, 2020, 26, 722-738.e7.	5.2	32

#	Article	IF	CITATIONS
37	HER2-targeted therapy influences CTC status in metastatic breast cancer. Breast Cancer Research and Treatment, 2020, 182, 127-136.	1.1	21
38	Innovations, challenges, and minimal information for standardization of humanized mice. EMBO Molecular Medicine, 2020, 12, e8662.	3.3	82
39	Abstract PD2-01: Exploring CDK4/6 inhibitor therapy response and drug resistance development at the single cell level in metastatic breast cancer CTCs. , 2020, , .		0
40	Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion. Nature, 2019, 572, 254-259.	13.7	246
41	OMIPâ€059: Identification of Mouse Hematopoietic Stem and Progenitor Cells with Simultaneous Detection of CD45.1/2 and Controllable Green Fluorescent Protein Expression by a Single Staining Panel. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 1049-1052.	1.1	11
42	Haematopoietic stem cells in perisinusoidal niches are protected from ageing. Nature Cell Biology, 2019, 21, 1309-1320.	4.6	88
43	The long non-coding RNA Meg3 is dispensable for hematopoietic stem cells. Scientific Reports, 2019, 9, 2110.	1.6	15
44	Identification of Embryonic Neural Plate Border Stem Cells and Their Generation by Direct Reprogramming from Adult Human Blood Cells. Cell Stem Cell, 2019, 24, 166-182.e13.	5.2	39
45	Deterministic Somatic Cell Reprogramming Involves Continuous Transcriptional Changes Governed by Myc and Epigenetic-Driven Modules. Cell Stem Cell, 2019, 24, 328-341.e9.	5.2	44
46	Sustained prognostic impact of circulating tumor cell status and kinetics upon further progression of metastatic breast cancer. Breast Cancer Research and Treatment, 2019, 173, 155-165.	1.1	11
47	Targeting VLA4 integrin and CXCR2 mobilizes serially repopulating hematopoietic stem cells. Journal of Clinical Investigation, 2019, 129, 2745-2759.	3.9	32
48	Abstract 3714: Efficient derivation and expansion of tumor cell lines from primary and xenotransplanted pancreatic, ovarian and renal tumors. , 2019, , .		0
49	Single cell polarity in liquid phase facilitates tumour metastasis. Nature Communications, 2018, 9, 887.	5.8	45
50	An Intrinsic Interferon Program Protects Stem Cells from Viral Infection. Developmental Cell, 2018, 44, 279-280.	3.1	8
51	AMPK promotes survival of câ€Mycâ€positive melanoma cells by suppressing oxidative stress. EMBO Journal, 2018, 37, .	3.5	34
52	Circulating free DNA integrity and concentration as independent prognostic markers in metastatic breast cancer. Breast Cancer Research and Treatment, 2018, 169, 69-82.	1.1	50
53	A Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies. Nature, 2018, 553, 515-520.	13.7	256
54	Saa3 is a key mediator of the protumorigenic properties of cancer-associated fibroblasts in pancreatic tumors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1147-E1156.	3.3	128

#	Article	IF	CITATIONS
55	The molecular signature of AML with increased ALDH activity suggests a stem cell origin. Leukemia and Lymphoma, 2018, 59, 2201-2210.	0.6	12
56	Senescence-associated reprogramming promotes cancer stemness. Nature, 2018, 553, 96-100.	13.7	714
57	Causes and Consequences of Hematopoietic Stem Cell Heterogeneity. Cell Stem Cell, 2018, 22, 627-638.	5.2	233
58	Pancreatic Ductal Adenocarcinoma Subtyping Using the Biomarkers Hepatocyte Nuclear Factor-1A and Cytokeratin-81 Correlates with Outcome and Treatment Response. Clinical Cancer Research, 2018, 24, 351-359.	3.2	81
59	Wnt1 is an Lrp5-independent bone-anabolic Wnt ligand. Science Translational Medicine, 2018, 10, .	5.8	66
60	Developmental vascular regression is regulated by a Wnt/β-catenin, MYC, P21 (CDKN1A) pathway that controls cell proliferation and cell death. Development (Cambridge), 2018, 145, .	1.2	26
61	Multi-Layered Single-Cell Transcriptional Profiling of All Bone and Bone Marrow Populations Provides a Systems View of the Mesenchymal and Hematopoietic Stem Cell Niche. Experimental Hematology, 2018, 64, S47-S48.	0.2	0
62	Single-cell characterization of haematopoietic progenitors and their trajectories in homeostasis and perturbed haematopoiesis. Nature Cell Biology, 2018, 20, 836-846.	4.6	267
63	Absence of NKG2D Ligands Defines Human Acute Myeloid Leukaemia Stem Cells and Mediates Their Immune Evasion. Blood, 2018, 132, 769-769.	0.6	2
64	The Netrin-1 - Neogenin Axis Regulates Hematopoietic Stem Cell Dormancy and Function with Implications for Stem Cell Ageing. Blood, 2018, 132, 637-637.	0.6	2
65	Abstract 1063: A clear cell renal cancer metastasis model identifies novel mediators of tumor aggressiveness and predictors of patient survival. , 2018, , .		0
66	Abstract 1050: Efficient derivation and expansion of tumor cell lines from primary and xenotransplanted pancreatic tumors. , 2018, , .		0
67	Characteristic Amino Acid and Energy Metabolism in AML Stem Cells As Revealed By Quantitative Multiplex Proteomics. Blood, 2018, 132, 2780-2780.	0.6	1
68	Combined Single-Cell and Spatial Transcriptomics to Deconvolute the Hematopoietic Stem Cell Niche. Blood, 2018, 132, 876-876.	0.6	2
69	Acquired CYP19A1 amplification is an early specific mechanism of aromatase inhibitor resistance in ERα metastatic breast cancer. Nature Genetics, 2017, 49, 444-450.	9.4	77
70	Endothelial Notch1 Activity Facilitates Metastasis. Cancer Cell, 2017, 31, 355-367.	7.7	237
71	MALDI versus ESI: The Impact of the Ion Source on Peptide Identification. Journal of Proteome Research, 2017, 16, 1207-1215.	1.8	62
72	Vitamin A-Retinoic Acid Signaling Regulates Hematopoietic Stem Cell Dormancy. Cell, 2017, 169, 807-823,e19.	13.5	339

5

#	Article	IF	CITATIONS
73	High prevalence of incidental and symptomatic venous thromboembolic events in patients with advanced pancreatic cancer under palliative chemotherapy: A retrospective cohort study. Pancreatology, 2017, 17, 629-634.	0.5	16
74	Systemic Virus Infections Differentially Modulate Cell Cycle State and Functionality of Long-Term Hematopoietic Stem Cells InÂVivo. Cell Reports, 2017, 19, 2345-2356.	2.9	58
75	Reduced hematopoietic stem cell frequency predicts outcome in acute myeloid leukemia. Haematologica, 2017, 102, 1567-1577.	1.7	37
76	Human haematopoietic stem cell lineage commitment is a continuous process. Nature Cell Biology, 2017, 19, 271-281.	4.6	709
77	Survival of pancreatic cancer cells lacking KRAS function. Nature Communications, 2017, 8, 1090.	5.8	131
78	Stem cells make leukemia grow again. EMBO Journal, 2017, 36, 2667-2669.	3.5	11
79	Identification and characterization of novel functional markers of EHT. Experimental Hematology, 2017, 53, S121.	0.2	0
80	Screening drug effects in patientâ€derived cancer cells links organoid responses to genome alterations. Molecular Systems Biology, 2017, 13, 955.	3.2	163
81	BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation. Nature, 2017, 551, 384-388.	13.7	261
82	Identification and Validation of Novel Subtype-Specific Protein Biomarkers in Pancreatic Ductal Adenocarcinoma. Pancreas, 2017, 46, 311-322.	0.5	22
83	Human haematopoietic stem cell differentiation follows a continuous waddington-like landscape. Experimental Hematology, 2017, 53, S101.	0.2	Ο
84	A Stem Cell-Based Epigenetic Memory Mediates Interferon Response-Heterogeneity within the Hematopoietic System. Blood, 2017, 130, 634-634.	0.6	3
85	Plasma hyaluronic acid level as a prognostic and monitoring marker of metastatic breast cancer. International Journal of Cancer, 2016, 138, 2499-2509.	2.3	31
86	Metabolic cues for hematopoietic stem cells. Science, 2016, 354, 1103-1104.	6.0	0
87	Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal. Genes and Development, 2016, 30, 2637-2648.	2.7	66
88	Plasma S100P level as a novel prognostic marker of metastatic breast cancer. Breast Cancer Research and Treatment, 2016, 157, 329-338.	1.1	18
89	Mutational hierarchies in myelodysplastic syndromes dynamically adapt and evolve upon therapy response and failure. Blood, 2016, 128, 1246-1259.	0.6	111
90	Functional and molecular segregation of in vitro specified hematopoietic stem and progenitor cells using a HOXB4 knock-in reporter. Experimental Hematology, 2016, 44, S84.	0.2	0

#	Article	IF	CITATIONS
91	Impact of apoptotic circulating tumor cells (aCTC) in metastatic breast cancer. Breast Cancer Research and Treatment, 2016, 160, 277-290.	1.1	23
92	Given the heterogeneity of putative leukemia stem cells, is this concept still clinically relevant?. Experimental Hematology, 2016, 44, S81.	0.2	0
93	Exit from HSC dormancy by a continuous upregulation of metabolism is controlled via vitamin A/ retinoic acid. Experimental Hematology, 2016, 44, S54.	0.2	0
94	Identification of a tumor-reactive T-cell repertoire in the immune infiltrate of patients with resectable pancreatic ductal adenocarcinoma. Oncolmmunology, 2016, 5, e1240859.	2.1	75
95	The influence of prostatic anatomy and neurotrophins on basal prostate epithelial progenitor cells. Prostate, 2016, 76, 114-121.	1.2	2
96	Human haematopoietic stem cell differentiation follows a continuous waddington-like landscape. Experimental Hematology, 2016, 44, S77.	0.2	0
97	Convergence of cMyc and βâ€catenin on Tcf7l1 enables endoderm specification. EMBO Journal, 2016, 35, 356-368.	3.5	35
98	The pivotal role of reactivity in the design of novel biotinylation reagents for the chemical-proteomics-based identification of vascular accessible biomarkers. Journal of Proteomics, 2016, 141, 57-66.	1.2	5
99	Circulating miRNAs with prognostic value in metastatic breast cancer and for early detection of metastasis. Carcinogenesis, 2016, 37, 461-470.	1.3	122
100	Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell, 2016, 164, 668-680.	13.5	209
101	miR-126 Drives Quiescence and Self-Renewal in Leukemic Stem Cells. Cancer Cell, 2016, 29, 133-135.	7.7	22
102	CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma. Nature Medicine, 2016, 22, 278-287.	15.2	184
103	Ion source-dependent performance of 4-vinylpyridine, iodoacetamide, and N-maleoyl derivatives for the detection of cysteine-containing peptides in complex proteomics. Analytical and Bioanalytical Chemistry, 2016, 408, 2055-2067.	1.9	5
104	Potency finds its niches. Science, 2016, 351, 126-127.	6.0	4
105	Abstract IA22: CYP3A5 mediates resistance to small molecule inhibitors in a subtype of pancreatic ductal adenocarcinoma. , 2016, , .		0
106	Abstract LB-120: CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma. , 2016, , .		0
107	Challenges and opportunities of CYP3A5 as novel drug target in pancreatic cancer subtypes. Translational Cancer Research, 2016, 5, S930-S931.	0.4	0
108	Abstract B77: CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma. , 2016, , .		0

#	Article	IF	CITATIONS
109	Transition out of HSC Dormancy By a Continuous Upregulation of Metabolism Is Controlled Via Dietary Vitamin A/ Retinoic Acid Signaling. Blood, 2016, 128, LBA-4-LBA-4.	0.6	1
110	Global regulatory networks and Myc regulation in HSCs and early progenitors. Experimental Hematology, 2015, 43, S43.	0.2	0
111	Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Experimental Hematology, 2015, 43, S47.	0.2	0
112	Virus infections differentially modulate the cell cycle state and functionality of dormant long-term hematopoietic stem cells in vivo. Experimental Hematology, 2015, 43, S67.	0.2	0
113	The sialyl-glycolipid stage-specific embryonic antigen 4 marks a subpopulation of chemotherapy-resistant breast cancer cells with mesenchymal features. Breast Cancer Research, 2015, 17, 146.	2.2	54
114	An Advanced Preclinical Mouse Model for Acute Myeloid Leukemia Using Patients' Cells of Various Genetic Subgroups and In Vivo Bioluminescence Imaging. PLoS ONE, 2015, 10, e0120925.	1.1	78
115	Defined Conditions for the Isolation and Expansion of Basal Prostate Progenitor Cells of Mouse and Human Origin. Stem Cell Reports, 2015, 4, 503-518.	2.3	24
116	The rarity of <scp>ALDH</scp> ⁺ cells is the key to separation of normal versus leukemia stem cells by <scp>ALDH</scp> activity in <scp>AML</scp> patients. International Journal of Cancer, 2015, 137, 525-536.	2.3	46
117	Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature, 2015, 520, 549-552.	13.7	498
118	Suppression of Early Hematogenous Dissemination of Human Breast Cancer Cells to Bone Marrow by Retinoic Acid–Induced 2. Cancer Discovery, 2015, 5, 506-519.	7.7	45
119	A Synergistic Interaction between Chk1- and MK2 Inhibitors in KRAS-Mutant Cancer. Cell, 2015, 162, 146-159.	13.5	100
120	CD95 promotes metastatic spread via Sck in pancreatic ductal adenocarcinoma. Cell Death and Differentiation, 2015, 22, 1192-1202.	5.0	45
121	The impact of HER2 phenotype of circulating tumor cells in metastatic breast cancer: a retrospective study in 107 patients. BMC Cancer, 2015, 15, 403.	1.1	70
122	Hematopoietic stem cell quiescence and function are controlled by the CYLD–TRAF2–p38MAPK pathway. Journal of Experimental Medicine, 2015, 212, 525-538.	4.2	46
123	Inflammation-Induced Emergency Megakaryopoiesis Driven by Hematopoietic Stem Cell-like Megakaryocyte Progenitors. Cell Stem Cell, 2015, 17, 422-434.	5.2	353
124	Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors. Cell, 2015, 163, 1663-1667.	13.5	875
125	Selection and dynamics of embryonic stem cell integration into early mouse embryos. Development (Cambridge), 2015, 143, 24-34.	1.2	37
126	Hematopoietic stem cell quiescence and function are controlled by the CYLD–TRAF2–p38MAPK pathway. Journal of Cell Biology, 2015, 209, 2091OIA63.	2.3	1

#	Article	IF	CITATIONS
127	Stem Cell-like Megakaryocyte Progenitors As Driving Forces of IFN-Induced Emergency Megakaryopooesis. Blood, 2015, 126, 2391-2391.	0.6	1
128	A novel autosomal recessive TERT T1129P mutation in a dyskeratosis congenita family leads to cellular senescence and loss of CD34+ hematopoietic stem cells not reversible by mTOR-inhibition. Aging, 2015, 7, 911-927.	1.4	13
129	Abstract A69: A novel mechanism mediates drug resistance in the exocrine-like pancreatic ductal adenocarcinoma (PDAC) subtype. , 2015, , .		Ο
130	Abstract A61: Exploring the PDAC-subtype-associated microenvironment in PDX models and patients. , 2015, , .		0
131	Transcriptome-wide Profiling and Posttranscriptional Analysis of Hematopoietic Stem/Progenitor Cell Differentiation toward Myeloid Commitment. Stem Cell Reports, 2014, 3, 858-875.	2.3	32
132	Expression and prognostic significance of cancer stem cell markers CD24 and CD44 in urothelial bladder cancer xenografts and patients undergoing radical cystectomy. Urologic Oncology: Seminars and Original Investigations, 2014, 32, 678-686.	0.8	38
133	Improved HSC reconstitution and protection from inflammatory stress and chemotherapy in mice lacking granzyme B. Journal of Experimental Medicine, 2014, 211, 769-779.	4.2	20
134	Plasma DNA integrity as a biomarker for primary and metastatic breast cancer and potential marker for early diagnosis. Breast Cancer Research and Treatment, 2014, 146, 163-174.	1.1	142
135	Identification of DNA methylation changes at <i>cis</i> -regulatory elements during early steps of HSC differentiation using tagmentation-based whole genome bisulfite sequencing. Cell Cycle, 2014, 13, 3476-3487.	1.3	39
136	Whole-genome bisulfite sequencing of HSCs and their immediate progeny identifies novel regulatory elements involved in self-renewal and early hematopoietic commitment. Experimental Hematology, 2014, 42, S20.	0.2	0
137	Mesenchymal and MDS stem cells shape an interactive disease unit in the bone marrow. Experimental Hematology, 2014, 42, S8.	0.2	0
138	The global RNA and protein landscape of hematopoietic stem cells and their immediate progeny. Experimental Hematology, 2014, 42, S26.	0.2	0
139	Stress-induced exit from dormancy alters redox signaling in HSCs, resulting in de novo DNA damage and bone marrow failure in the absence of a functional fanconi anemia signaling pathway. Experimental Hematology, 2014, 42, S45.	0.2	1
140	Inflammation-driven fast-track differentiation of HSCs into the megakaryocytic lineage. Experimental Hematology, 2014, 42, S14.	0.2	0
141	Identification of Regulatory Networks in HSCs and Their Immediate Progeny via Integrated Proteome, Transcriptome, and DNA Methylome Analysis. Cell Stem Cell, 2014, 15, 507-522.	5.2	439
142	Serial enumeration of circulating tumor cells predicts treatment response and prognosis in metastatic breast cancer: a prospective study in 393 patients. BMC Cancer, 2014, 14, 512.	1.1	65
143	The impact of type 2 diabetes on the outcome of localized renal cell carcinoma. World Journal of Urology, 2014, 32, 1537-1542.	1.2	13
144	Myelodysplastic Cells in Patients Reprogram Mesenchymal Stromal Cells to Establish a Transplantable Stem Cell Niche Disease Unit. Cell Stem Cell, 2014, 14, 824-837.	5.2	335

#	Article	IF	CITATIONS
145	Posttranscriptional regulation of c-Myc expression in adult murine HSCs during homeostasis and interferon-α-induced stress response. Blood, 2014, 123, 3909-3913.	0.6	33
146	Loss of SPARC protects hematopoietic stem cells from chemotherapy toxicity by accelerating their return to quiescence. Blood, 2014, 123, 4054-4063.	0.6	25
147	Chemotherapy-Induced Senescence Reprograms Lymphoma and Leukemia Cells into Latent Cancer Stem Cells That Are Susceptible to Conceptually Novel Treatments. Blood, 2014, 124, 4788-4788.	0.6	1
148	Co-expression of MET and CD47 is a novel prognosticator for survival of luminal-type breast cancer patients. Oncotarget, 2014, 5, 8147-8160.	0.8	83
149	A Novel Enhancer Region 1.7Mb Downstream of the C-Myc Gene Drives Its Expression in Hematopoietic Stem and Progenitor Cells. Blood, 2014, 124, 766-766.	0.6	0
150	Quantitative Analysis of Patient-Specific Lesions in Primary and Xenografted Myelodysplastic Syndromes Reveals Complex Hierarchies and Subclonal Diversity That Evolve during Disease Progression. Blood, 2014, 124, 4604-4604.	0.6	0
151	Bioluminescence in Vivo Imaging Improves the Model of Individual Patients' AML Cells Growing in Mice for Sensitive and Reliable Preclinical Treatment Trials on Various Genetic Subgroups. Blood, 2014, 124, 2323-2323.	0.6	0
152	In-Depth Quantitative Multiplex Proteomics Reveal Subtype-Specific Differences Among Functionally Validated AML Stem Cell Populations. Blood, 2014, 124, 2144-2144.	0.6	0
153	Altered HSC Metabolism in Response to Stress Leads to De Novo dna Damage and Cellular Attrition. Blood, 2014, 124, 255-255.	0.6	0
154	Development and Characteristics of Preclinical Experimental Models for the Research of Rare Neuroendocrine Bladder Cancer. Journal of Urology, 2013, 190, 2263-2270.	0.2	14
155	Hypermutation of the Inactive X Chromosome Is a Frequent Event in Cancer. Cell, 2013, 155, 567-581.	13.5	67
156	Pten loss in the bone marrow leads to G-CSF–mediated HSC mobilization. Journal of Experimental Medicine, 2013, 210, 2337-2349.	4.2	36
157	Label retaining cells in cancer – The dormant root of evil?. Cancer Letters, 2013, 341, 73-79.	3.2	17
158	The prognostic impact of circulating tumor cells in subtypes of metastatic breast cancer. Breast Cancer Research and Treatment, 2013, 137, 503-510.	1.1	118
159	Global landscape of hematopoietic stem cells and multipotent progenitors. Experimental Hematology, 2013, 41, S13.	0.2	0
160	1123 ESTABLISHMENT OF PRIMARY TUMOR XENOGRAFTS IN IMMUNODEFICIENT MICE - THE ROLE OF CHRONIC GRAFT VERSUS HOST REACTIONS - IDENTIFICATION AND AVOIDANCE OF INVALID SCIENTIFIC RESULTS. Journal of Urology, 2013, 189, .	0.2	0
161	Loss of sparc protects hematopoietic stem cells from the toxic effects of repeated cycles of chemotherapy by accelerating their return to quiescence. Experimental Hematology, 2013, 41, S40.	0.2	0
162	Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nature Biotechnology, 2013, 31, 539-544.	9.4	920

#	Article	IF	CITATIONS
163	Instruction of haematopoietic lineage choices, evolution of transcriptional landscapes and cancer stem cell hierarchies derived from an <scp>AML</scp> 1― <scp>ETO</scp> mouse model. EMBO Molecular Medicine, 2013, 5, 1804-1820.	3.3	33
164	Abstract B50: A patient-derived renal cell carcinoma model as a platform for the identification of novel diagnostic markers and therapeutic targets. , 2013, , .		0
165	HSC Exit From Dormancy Provokes De Novo DNA Damage, Leading To Bone Marrow Failure If Unresolved By The Fanconi Anemia Pathway. Blood, 2013, 122, 799-799.	0.6	0
166	Next Generation Sequencing-Based Molecular Dissection Of Lineage-Specific Mutational Hierarchies In Oligoclonal Primary and Xenografted Myelodysplasia. Blood, 2013, 122, 519-519.	0.6	0
167	Identification Of Novel Markers Of Human AML Stem Cells Using High Resolution Proteomics and Transcriptomics. Blood, 2013, 122, 4194-4194.	0.6	Ο
168	MDS-Derived Stromal Cells Exhibit Altered Gene Expression and Support The Engraftment Of lin-CD34+CD38- Disease-Initiating Stem Cells In a Xenograft Model Of Lower Risk MDS. Blood, 2013, 122, 100-100.	0.6	11
169	Proteomic Cornerstones of Hematopoietic Stem Cell Differentiation: Distinct Signatures of Multipotent Progenitors and Myeloid Committed Cells. Molecular and Cellular Proteomics, 2012, 11, 286-302.	2.5	60
170	Genome-wide mapping of Myc binding and gene regulation in serum-stimulated fibroblasts. Oncogene, 2012, 31, 1695-1709.	2.6	90
171	Therapy of chronic myeloid leukaemia can benefit from the activation of stem cells: simulation studies of different treatment combinations. British Journal of Cancer, 2012, 106, 1742-1752.	2.9	24
172	Leukemic spleen cells are more potent than bone marrow-derived cells in a transgenic mouse model of CML. Leukemia, 2012, 26, 1030-1037.	3.3	29
173	Circulating miRNAs as Surrogate Markers for Circulating Tumor Cells and Prognostic Markers in Metastatic Breast Cancer. Clinical Cancer Research, 2012, 18, 5972-5982.	3.2	231
174	The evolving concept of cancer and metastasis stem cells. Journal of Cell Biology, 2012, 198, 281-293.	2.3	356
175	Multiple myeloma–related deregulation of bone marrow–derived CD34+ hematopoietic stem and progenitor cells. Blood, 2012, 120, 2620-2630.	0.6	82
176	Constitutive gray hair in mice induced by melanocyteâ€specific deletion of câ€Myc. Pigment Cell and Melanoma Research, 2012, 25, 312-325.	1.5	13
177	What does the concept of the stem cell niche really mean today?. BMC Biology, 2012, 10, 19.	1.7	155
178	Stress-Mediated Activation of Dormant Hematopoietic Stem Cells In Vivo. Blood, 2012, 120, SCI-41-SCI-41.	0.6	0
179	Significant Engraftment of Immature Hematopoietic Cells From Patients with Low Risk Myelodysplastic Syndromes (MDS) in Immunodeficient Mice. Blood, 2012, 120, 1694-1694.	0.6	0
180	The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. Journal of Experimental Medicine, 2011, 208, 421-428.	4.2	488

#	Article	IF	CITATIONS
181	Breaking the Cell Cycle of HSCs by p57 and Friends. Cell Stem Cell, 2011, 9, 187-192.	5.2	55
182	Enhanced c-Met activity promotes C-CSF–induced mobilization of hematopoietic progenitor cells via ROS signaling. Blood, 2011, 117, 419-428.	0.6	114
183	Bridging the information gap. Nature Immunology, 2011, 12, 377-379.	7.0	5
184	Lineage- and stage-restricted lentiviral vectors for the gene therapy of chronic granulomatous disease. Gene Therapy, 2011, 18, 1087-1097.	2.3	45
185	Toward modeling the bone marrow niche using scaffold-based 3D culture systems. Biomaterials, 2011, 32, 321-329.	5.7	149
186	High-level IGF1R expression is required for leukemia-initiating cell activity in T-ALL and is supported by Notch signaling. Journal of Experimental Medicine, 2011, 208, 1809-1822.	4.2	153
187	<i>N-myc</i> Controls Proliferation, Morphogenesis, and Patterning of the Inner Ear. Journal of Neuroscience, 2011, 31, 7178-7189.	1.7	46
188	Stress-Induced Activation of Dormant Hematopoietic Stem Cells In Vivo,. Blood, 2011, 118, 3390-3390.	0.6	2
189	High-level IGF1R expression is required for leukemia-initiating cell activity in T-ALL and is supported by Notch signaling. Journal of Cell Biology, 2011, 194, i8-i8.	2.3	Ο
190	The Disease-Related Bone Marrow Microenvironment Alters Hematopoietic Stem and Progenitor Function in Multiple Myeloma Patients. Blood, 2011, 118, 2898-2898.	0.6	0
191	c-Myc controls the development of CD8αα TCRαβ intestinal intraepithelial lymphocytes from thymic precursors by regulating IL-15–dependent survival. Blood, 2010, 115, 4431-4438.	0.6	27
192	Inducible Gene and shRNA Expression in Resident Hematopoietic Stem Cells In Vivo Â. Stem Cells, 2010, 28, 1390-1398.	1.4	29
193	Awakening dormant haematopoietic stem cells. Nature Reviews Immunology, 2010, 10, 201-209.	10.6	382
194	Targeting leukemic stem cells by breaking their dormancy. Molecular Oncology, 2010, 4, 443-450.	2.1	171
195	Tuning mTORC1 Activity for Balanced Self-Renewal and Differentiation. Developmental Cell, 2010, 19, 187-188.	3.1	5
196	Activation of Dormant Hematopoietic Stem Cells In Vivo by the Endotoxin LPS Blood, 2010, 116, 1613-1613.	0.6	3
197	Estimating Dormant and Active Hematopoietic Stem Cell Kinetics through Extensive Modeling of Bromodeoxyuridine Label-Retaining Cell Dynamics. PLoS ONE, 2009, 4, e6972.	1.1	71
198	Selective Requirement for c-Myc at an Early Stage of Vα14i NKT Cell Development. Journal of Immunology, 2009, 182, 4641-4648.	0.4	82

#	Article	IF	CITATIONS
199	Regulation of Episomal Gene Expression by KRAB/KAP1-Mediated Histone Modifications. Journal of Virology, 2009, 83, 5574-5580.	1.5	25
200	Coordinated control of self-renewal and differentiation of neural stem cells by Myc and the p19ARF–p53 pathway. Journal of Cell Biology, 2009, 184, 335-335.	2.3	0
201	Histone Acetyltransferase Cofactor Trrap Is Essential for Maintaining the Hematopoietic Stem/Progenitor Cell Pool. Journal of Immunology, 2009, 183, 6422-6431.	0.4	29
202	Myc's other life: stem cells and beyond. Current Opinion in Cell Biology, 2009, 21, 844-854.	2.6	89
203	c-Myc affects mRNA translation, cell proliferation and progenitor cell function in the mammary gland. BMC Biology, 2009, 7, 63.	1.7	31
204	IFNÎ \pm activates dormant haematopoietic stem cells in vivo. Nature, 2009, 458, 904-908.	13.7	1,181
205	Hematopoietic Stem Cells Reversibly Switch from Dormancy to Self-Renewal during Homeostasis and Repair. Cell, 2009, 138, 209.	13.5	2
206	Balancing dormant and self-renewing hematopoietic stem cells. Current Opinion in Genetics and Development, 2009, 19, 461-468.	1.5	176
207	In vivo fate mapping with SCL regulatory elements identifies progenitors for primitive and definitive hematopoiesis in mice. Mechanisms of Development, 2009, 126, 863-872.	1.7	3
208	Pancreatic Inactivation of c-Myc Decreases Acinar Mass and Transdifferentiates Acinar Cells Into Adipocytes in Mice. Gastroenterology, 2009, 136, 309-319.e9.	0.6	97
209	Hematopoietic Stem Cell Niches. , 2009, , 47-71.		4
210	Malignant Myeloma Cells Impair Phenotype and Function of stem and Progenitor Cells Blood, 2009, 114, 1799-1799.	0.6	0
211	C-Myc and its target FoxM1 are critical downstream effectors of constitutive androstane receptor (CAR) mediated direct liver hyperplasia. Hepatology, 2008, 48, 1302-1311.	3.6	121
212	Epithelial Pten is dispensable for intestinal homeostasis but suppresses adenoma development and progression after Apc mutation. Nature Genetics, 2008, 40, 1436-1444.	9.4	101
213	Mechanisms of Disease: cancer stem cells—targeting the evil twin. Nature Clinical Practice Oncology, 2008, 5, 337-347.	4.3	185
214	Hematopoietic Stem Cell Function and Survival Depend on c-Myc and N-Myc Activity. Cell Stem Cell, 2008, 3, 611-624.	5.2	253
215	Hematopoietic Stem Cells Reversibly Switch from Dormancy to Self-Renewal during Homeostasis and Repair. Cell, 2008, 135, 1118-1129.	13.5	1,627
216	<i>c-myc</i> in the hematopoietic lineage is crucial for its angiogenic function in the mouse embryo. Development (Cambridge), 2008, 135, 2467-2477.	1.2	66

13

#	Article	IF	CITATIONS
217	Coordinated control of self-renewal and differentiation of neural stem cells by Myc and the p19ARF–p53 pathway. Journal of Cell Biology, 2008, 183, 1243-1257.	2.3	64
218	Placental rescue reveals a sole requirement for c-Myc in embryonic erythroblast survival and hematopoietic stem cell function. Development (Cambridge), 2008, 135, 2455-2465.	1.2	81
219	Unique mechanisms of growth regulation and tumor suppression upon Apc inactivation in the pancreas. Development (Cambridge), 2007, 134, 2719-2725.	1.2	54
220	Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nature Medicine, 2007, 13, 742-747.	15.2	266
221	Dormant and Selfâ€Renewing Hematopoietic Stem Cells and Their Niches. Annals of the New York Academy of Sciences, 2007, 1106, 64-75.	1.8	202
222	c-Myc acts downstream of IL-15 in the regulation of memory CD8 T-cell homeostasis. Blood, 2006, 107, 3992-3999.	0.6	51
223	Bone-marrow haematopoietic-stem-cell niches. Nature Reviews Immunology, 2006, 6, 93-106.	10.6	1,179
224	Nestin-Cre mediated deletion ofPitx2 in the mouse. Genesis, 2006, 44, 336-344.	0.8	41
225	Nestin-Cre transgenic mouse line Nes-Cre1 mediates highly efficient Cre/loxP mediated recombination in the nervous system, kidney, and somite-derived tissues. Genesis, 2006, 44, 355-360.	0.8	149
226	Identification of evolutionarily conserved regulatory elements in the mouse Fgf8 locus. Genesis, 2006, 44, 1-6.	0.8	31
227	Activated Src abrogates the Myc requirement for the G0/G1 transition but not for the G1/S transition. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2695-2700.	3.3	43
228	Skin epidermis lacking the c-myc gene is resistant to Ras-driven tumorigenesis but can reacquire sensitivity upon additional loss of the p21Cip1 gene. Genes and Development, 2006, 20, 2024-2029.	2.7	77
229	The Myc trilogy: lord of RNA polymerases. Nature Cell Biology, 2005, 7, 215-217.	4.6	117
230	More than just proliferation: Myc function in stem cells. Trends in Cell Biology, 2005, 15, 128-137.	3.6	168
231	Metastasizing Melanoma Formation Caused by Expression of Activated N-RasQ61K on an INK4a-Deficient Background. Cancer Research, 2005, 65, 4005-4011.	0.4	263
232	c-Myc Is Required for the Formation of Intestinal Crypts but Dispensable for Homeostasis of the Adult Intestinal Epithelium. Molecular and Cellular Biology, 2005, 25, 7868-7878.	1.1	140
233	The protooncogene MYC can break B cell tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4097-4102.	3.3	24
234	Development of Ewing's Sarcoma from Primary Bone Marrow–Derived Mesenchymal Progenitor Cells. Cancer Research, 2005, 65, 11459-11468.	0.4	326

#	Article	IF	CITATIONS
235	c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes and Development, 2004, 18, 2747-2763.	2.7	689
236	Nestin expression in pancreatic exocrine cell lineages. Mechanisms of Development, 2004, 121, 3-14.	1.7	133
237	Colonic Epithelial Expression of ErbB2 Is Required for Postnatal Maintenance of the Enteric Nervous System. Neuron, 2003, 37, 29-40.	3.8	64
238	Conditional Mutation of Rb Causes Cell Cycle Defects without Apoptosis in the Central Nervous System. Molecular and Cellular Biology, 2003, 23, 1044-1053.	1.1	136
239	Negative Regulation of Neural Stem/Progenitor Cell Proliferation by the Pten Tumor Suppressor Gene in Vivo. Science, 2001, 294, 2186-2189.	6.0	761
240	DNA Hypomethylation Perturbs the Function and Survival of CNS Neurons in Postnatal Animals. Journal of Neuroscience, 2001, 21, 788-797.	1.7	344
241	c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature, 2001, 414, 768-773.	13.7	416
242	Inducible chromosomal translocation of AML1 and ETO genes through Cre/loxPâ€mediated recombination in the mouse. EMBO Reports, 2000, 1, 133-139.	2.0	105
243	Neurotrophin–3 is required for proper cerebellar development. Nature Neuroscience, 1999, 2, 115-117.	7.1	137
244	Inhibitors in control. Trends in Cell Biology, 1999, 9, 122.	3.6	0
245	Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch. Genes and Development, 1999, 13, 3136-3148.	2.7	473
246	The chicken limb deformity gene encodes nuclear proteins expressed in specific cell types during morphogenesis Genes and Development, 1992, 6, 14-28.	2.7	61
247	The Limb Deformity Gene Encodes Evolutionarily Highly Conserved Proteins. , 1991, , 25-30.		1
248	The Molecular and Functional Foundations of Conducive Somatic Cell Reprogramming to Ground State Pluripotency. SSRN Electronic Journal, 0, , .	0.4	0