Pierre-Marc Delaux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5368372/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NIN-Like Proteins: Interesting Players in Rhizobia-Induced Nitrate Signaling Response During Interaction with Non-Legume Host <i>Arabidopsis thaliana</i> . Molecular Plant-Microbe Interactions, 2022, 35, 230-243.	1.4	3
2	Plant–microbe interactions that have impacted plant terrestrializations. Plant Physiology, 2022, 190, 72-84.	2.3	10
3	An ancestral function of strigolactones as symbiotic rhizosphere signals. Nature Communications, 2022, 13, .	5.8	55
4	The Phosphate Starvation Response System: Its Role in the Regulation of Plant–Microbe Interactions. Plant and Cell Physiology, 2021, 62, 392-400.	1.5	21
5	Plant evolution driven by interactions with symbiotic and pathogenic microbes. Science, 2021, 371, .	6.0	162
6	The genome of Geosiphon pyriformis reveals ancestral traits linked to the emergence of the arbuscular mycorrhizal symbiosis. Current Biology, 2021, 31, 1570-1577.e4.	1.8	30
7	Lipid exchanges drove the evolution of mutualism during plant terrestrialization. Science, 2021, 372, 864-868.	6.0	90
8	Formin-mediated bridging of cell wall, plasma membrane, and cytoskeleton in symbiotic infections of Medicago truncatula. Current Biology, 2021, 31, 2712-2719.e5.	1.8	20
9	Plant biology: Two green revolutions mediated byÂDELLA. Current Biology, 2021, 31, R1001-R1003.	1.8	2
10	Genomic and fossil windows into the secret lives of the most ancient fungi. Nature Reviews Microbiology, 2020, 18, 717-730.	13.6	56
11	VAPYRIN-like is required for development of the moss <i>Physcomitrella patens</i> . Development (Cambridge), 2020, 147, .	1.2	7
12	Evolution of Plant Metabolism: A (Bio)synthesis. Current Biology, 2020, 30, R432-R435.	1.8	1
13	Plant Evolution: When Arabidopsis Is More Ancestral Than Marchantia. Current Biology, 2020, 30, R642-R644.	1.8	8
14	Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nature Plants, 2020, 6, 259-272.	4.7	225
15	An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages. Nature Plants, 2020, 6, 280-289.	4.7	150
16	The <i>Medicago truncatula</i> DREPP Protein Triggers Microtubule Fragmentation in Membrane Nanodomains during Symbiotic Infections. Plant Cell, 2020, 32, 1689-1702.	3.1	23
17	High-quality genome sequence of white lupin provides insight into soil exploration and seed quality. Nature Communications, 2020, 11, 492.	5.8	90
18	Genomes of Subaerial Zygnematophyceae Provide Insights into Land Plant Evolution. Cell, 2019, 179, 1057-1067.e14.	13.5	320

PIERRE-MARC DELAUX

#	Article	IF	CITATIONS
19	Reconstructing trait evolution in plant evo–devo studies. Current Biology, 2019, 29, R1110-R1118.	1.8	47
20	LCO Receptors Involved in Arbuscular Mycorrhiza Are Functional for Rhizobia Perception in Legumes. Current Biology, 2019, 29, 4249-4259.e5.	1.8	41
21	A Novel Positive Regulator of the Early Stages of Root Nodule Symbiosis Identified by Phosphoproteomics. Plant and Cell Physiology, 2019, 60, 575-586.	1.5	10
22	10KP: A phylodiverse genome sequencing plan. GigaScience, 2018, 7, 1-9.	3.3	169
23	What have we learnt from studying the evolution of the arbuscular mycorrhizal symbiosis?. Current Opinion in Plant Biology, 2018, 44, 49-56.	3.5	31
24	Taking the step: from Evoâ€Devo to plant–microbe interaction evolution with the liverwort <i>Marchantia</i> . New Phytologist, 2018, 218, 882-884.	3.5	3
25	Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science, 2018, 361, .	6.0	339
26	Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nature Plants, 2018, 4, 460-472.	4.7	391
27	Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biology, 2018, 16, e2006352.	2.6	236
28	The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization. Cell, 2018, 174, 448-464.e24.	13.5	420
29	Comparative phylogenomics of symbiotic associations. New Phytologist, 2017, 213, 89-94.	3.5	40
30	Lipid transfer from plants to arbuscular mycorrhiza fungi. ELife, 2017, 6, .	2.8	329
31	Mycorrhizal symbioses: today and tomorrow. New Phytologist, 2016, 209, 917-920.	3.5	14
32	Standards for plant synthetic biology: a common syntax for exchange of <scp>DNA</scp> parts. New Phytologist, 2015, 208, 13-19.	3.5	263
33	Network of GRAS Transcription Factors Involved in the Control of Arbuscule Development in <i>Lotus japonicus</i> Â Â. Plant Physiology, 2015, 167, 854-871.	2.3	151
34	Tracing the evolutionary path to nitrogen-fixing crops. Current Opinion in Plant Biology, 2015, 26, 95-99.	3.5	44
35	Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses. New Phytologist, 2015, 208, 79-87.	3.5	139
36	Algal ancestor of land plants was preadapted for symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13390-13395.	3.3	292

#	Article	IF	CITATIONS
37	Differential Activity of Striga hermonthica Seed Germination Stimulants and Gigaspora rosea Hyphal Branching Factors in Rice and Their Contribution to Underground Communication. PLoS ONE, 2014, 9, e104201.	1.1	14
38	Comparative Phylogenomics Uncovers the Impact of Symbiotic Associations on Host Genome Evolution. PLoS Genetics, 2014, 10, e1004487.	1.5	229
39	Effect of drought on Bradyrhizobium japonicum populations in Midwest soils. Plant and Soil, 2014, 382, 165-173.	1.8	12
40	Evolution of the plant–microbe symbiotic â€~toolkit'. Trends in Plant Science, 2013, 18, 298-304.	4.3	159
41	<scp>NSP</scp> 1 is a component of the Myc signaling pathway. New Phytologist, 2013, 199, 59-65.	3.5	95
42	<scp>MALDI</scp> mass spectrometryâ€assisted molecular imaging of metabolites during nitrogen fixation in the <i><scp>M</scp>edicago truncatula</i> – <i><scp>S</scp>inorhizobium meliloti</i> symbiosis. Plant Journal, 2013, 75, 130-145.	2.8	119
43	The microRNA miR171h modulates arbuscular mycorrhizal colonization of <i>Medicago truncatula</i> by targeting <i>NSP2</i> . Plant Journal, 2012, 72, 512-522.	2.8	163
44	Molecular and biochemical aspects of plant terrestrialization. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14, 49-59.	1.1	55
45	Origin of strigolactones in the green lineage. New Phytologist, 2012, 195, 857-871.	3.5	258
46	Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta, 2011, 233, 209-216.	1.6	452