Pengyan Xia

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5368005/pengyan-xia-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,989 28 19 27 h-index g-index citations papers 28 19.1 2,440 4.52 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
27	Transdifferentiation of tumor infiltrating innate lymphoid cells during progression of colorectal cancer. <i>Cell Research</i> , 2020 , 30, 610-622	24.7	34
26	Glutamylation of deubiquitinase BAP1 controls self-renewal of hematopoietic stem cells and hematopoiesis. <i>Journal of Experimental Medicine</i> , 2020 , 217,	16.6	5
25	LC Domain-Mediated Coalescence Is Essential for Otu Enzymatic Activity to Extend Drosophila Lifespan. <i>Molecular Cell</i> , 2019 , 74, 363-377.e5	17.6	15
24	A Circular RNA Protects Dormant Hematopoietic Stem Cells from DNA Sensor cGAS-Mediated Exhaustion. <i>Immunity</i> , 2018 , 48, 688-701.e7	32.3	139
23	Klf4 glutamylation is required for cell reprogramming and early embryonic development in mice. <i>Nature Communications</i> , 2018 , 9, 1261	17.4	23
22	The ER membrane adaptor ERAdP senses the bacterial second messenger c-di-AMP and initiates anti-bacterial immunity. <i>Nature Immunology</i> , 2018 , 19, 141-150	19.1	26
21	controls self-renewal of embryonic stem cells via activating expression of transcription factor. <i>EMBO Journal</i> , 2018 , 37,	13	59
20	WASH maintains NKp46 ILC3 cells by promoting AHR expression. <i>Nature Communications</i> , 2017 , 8, 1568	517.4	10
19	Regulatory Innate Lymphoid Cells Control Innate Intestinal Inflammation. <i>Cell</i> , 2017 , 171, 201-216.e18	56.2	211
18	Natural-Killer-like B Cells Function as a Separate Subset of Innate B Cells. <i>Immunity</i> , 2017 , 47, 201-202	32.3	5
17	Suppression of SRCAP chromatin remodelling complex and restriction of lymphoid lineage commitment by Pcid2. <i>Nature Communications</i> , 2017 , 8, 1518	17.4	19
16	FoxO1-mediated autophagy is required for NK cell development and innate immunity. <i>Nature Communications</i> , 2016 , 7, 11023	17.4	96
15	Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. <i>Nature Immunology</i> , 2016 , 17, 369-78	19.1	123
14	Natural Killer-like B Cells Prime Innate Lymphocytes against Microbial Infection. <i>Immunity</i> , 2016 , 45, 13	1 31 243	26
13	DNA sensor cGAS-mediated immune recognition. <i>Protein and Cell</i> , 2016 , 7, 777-791	7.2	65
12	Sox2 functions as a sequence-specific DNA sensor in neutrophils to initiate innate immunity against microbial infection. <i>Nature Immunology</i> , 2015 , 16, 366-75	19.1	66
11	The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. <i>Cell Stem Cell</i> , 2015 , 16, 413-25	18	437

LIST OF PUBLICATIONS

10	IRTKS negatively regulates antiviral immunity through PCBP2 sumoylation-mediated MAVS degradation. <i>Nature Communications</i> , 2015 , 6, 8132	17.4	38	
9	Insulin-InsR signaling drives multipotent progenitor differentiation toward lymphoid lineages. <i>Journal of Experimental Medicine</i> , 2015 , 212, 2305-21	16.6	16	
8	Pcid2 inactivates developmental genes in human and mouse embryonic stem cells to sustain their pluripotency by modulation of EID1 stability. <i>Stem Cells</i> , 2014 , 32, 623-35	5.8	12	
7	Cytosolic carboxypeptidase CCP6 is required for megakaryopoiesis by modulating Mad2 polyglutamylation. <i>Journal of Experimental Medicine</i> , 2014 , 211, 2439-54	16.6	23	
6	WASH is required for the differentiation commitment of hematopoietic stem cells in a c-Myc-dependent manner. <i>Journal of Experimental Medicine</i> , 2014 , 211, 2119-34	16.6	43	
5	Molecular mechanism for self-protection against the type VI secretion system in Vibrio cholerae. <i>Acta Crystallographica Section D: Biological Crystallography</i> , 2014 , 70, 1094-103		5	
4	RNF2 is recruited by WASH to ubiquitinate AMBRA1 leading to downregulation of autophagy. <i>Cell Research</i> , 2014 , 24, 943-58	24.7	67	
3	T-cell immunoglobulin and ITIM domain (TIGIT) receptor/poliovirus receptor (PVR) ligand engagement suppresses interferon-[production of natural killer cells via Earrestin 2-mediated negative signaling. <i>Journal of Biological Chemistry</i> , 2014 , 289, 17647-57	5.4	135	
2	WASH inhibits autophagy through suppression of Beclin 1 ubiquitination. <i>EMBO Journal</i> , 2013 , 32, 268	5-96	138	
1	Transient activation of autophagy via Sox2-mediated suppression of mTOR is an important early step in reprogramming to pluripotency. <i>Cell Stem Cell</i> , 2013 , 13, 617-25	18	150	