Mikko Ritala

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5367942/mikko-ritala-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

126 23,469 526 74 h-index g-index citations papers 6.92 565 25,100 4.7 ext. citations avg, IF L-index ext. papers

#	Paper	IF	Citations
526	Ambient pressure x-ray photoelectron spectroscopy setup for synchrotron-based in situ and operando atomic layer deposition research <i>Review of Scientific Instruments</i> , 2022 , 93, 013905	1.7	2
525	Atomic layer deposition of GdF3 thin films. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2022 , 40, 022402	2.9	0
524	Inter-laboratory workflow for forensic applications: Classification of car glass fragments <i>Forensic Science International</i> , 2022 , 333, 111216	2.6	1
523	Reaction mechanism studies on atomic layer deposition process of AlF3. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2022 , 40, 022401	2.9	0
522	Osteoblast Attachment on Titanium Coated with Hydroxyapatite by Atomic Layer Deposition. <i>Biomolecules</i> , 2022 , 12, 654	5.9	1
521	Combining Experimental and DFT Investigation of the Mechanism Involved in Thermal Etching of Titanium Nitride Using Alternate Exposures of NbF5 and CCl4, or CCl4 Only. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2101085	4.6	2
520	Observed and Modeled Black Carbon Deposition and Sources in the Western Russian Arctic 1800-2014. <i>Environmental Science & Environmental Science & Env</i>	10.3	1
519	Atomic layer deposition of TbF3 thin films. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2021 , 39, 022404	2.9	2
518	Atomic Layer Deposition of Insulating AlF3/Polyimide Nanolaminate Films. <i>Coatings</i> , 2021 , 11, 355	2.9	1
517	Synchronizing gas injections and time-resolved data acquisition for perturbation-enhanced APXPS experiments. <i>Review of Scientific Instruments</i> , 2021 , 92, 044101	1.7	2
516	Thermal Atomic Layer Etching of Aluminum Oxide (Al2O3) Using Sequential Exposures of Niobium Pentafluoride (NbF5) and Carbon Tetrachloride (CCl4): A Combined Experimental and Density Functional Theory Study of the Etch Mechanism. <i>Chemistry of Materials</i> , 2021 , 33, 2883-2893	9.6	6
515	Highly Material Selective and Self-Aligned Photo-assisted Atomic Layer Deposition of Copper on Oxide Materials. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100014	4.6	3
514	Oxidative MLD of Conductive PEDOT Thin Films with EDOT and ReCl as Precursors. <i>ACS Omega</i> , 2021 , 6, 17545-17554	3.9	6
513	In Situ Positron Annihilation Spectroscopy Analysis on Low-Temperature Irradiated Semiconductors, Challenges and Possibilities. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2021 , 218, 2000232	1.6	2
512	Sb-doped zirconium dioxide submicron fibers for separation of pertechnetate (TcO4I) from aqueous solutions. <i>Separation Science and Technology</i> , 2021 , 56, 2338-2350	2.5	2
511	Thermal gas-phase etching of titanium nitride (TiN) by thionyl chloride (SOCl2). <i>Applied Surface Science</i> , 2021 , 540, 148309	6.7	2
510	Effect of polyethylene wax/soy protein-based dispersion barrier coating on the physical, mechanical, and barrier characteristics of paperboards 2021 , 18, 247-257		2

509	Role of ALD AlO Surface Passivation on the Performance of p-Type CuO Thin Film Transistors. <i>ACS Applied Materials & District Materials</i>	9.5	15
508	Novel electroblowing synthesis of tin dioxide and composite tin dioxide/silicon dioxide submicron fibers for cobalt(ii) uptake <i>RSC Advances</i> , 2021 , 11, 15245-15257	3.7	0
507	Highly conductive and stable CoS thin films by atomic layer deposition: from process development and film characterization to selective and epitaxial growth. <i>Dalton Transactions</i> , 2021 , 50, 13264-13275	4.3	
506	Understanding the Stabilizing Effects of Nanoscale Metal Oxide and Li-Metal Oxide Coatings on Lithium-Ion Battery Positive Electrode Materials. <i>ACS Applied Materials & Discounty of the Page 1</i> , 13, 4277	3 -427	96
505	Self-Aligned Thin-Film Patterning by Area-Selective Etching of Polymers. <i>Coatings</i> , 2021 , 11, 1124	2.9	1
504	Atomic Layer Deposition of 2D Metal Dichalcogenides for Electronics, Catalysis, Energy Storage, and Beyond. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2001677	4.6	12
503	Magnetic properties and resistive switching in mixture films and nanolaminates consisting of iron and silicon oxides grown by atomic layer deposition. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2020 , 38, 042405	2.9	2
502	Area-Selective Molecular Layer Deposition of Polyimide on Cu through Cu-Catalyzed Formation of a Crystalline Interchain Polyimide. <i>Chemistry of Materials</i> , 2020 , 32, 5073-5083	9.6	8
501	Effect of interstitial carbon on the evolution of early-stage irradiation damage in equi-atomic FeMnNiCoCr high-entropy alloys. <i>Journal of Applied Physics</i> , 2020 , 127, 025103	2.5	13
500	Silicon oxide-niobium oxide mixture films and nanolaminates grown by atomic layer deposition from niobium pentaethoxide and hexakis(ethylamino) disilane. <i>Nanotechnology</i> , 2020 , 31, 195713	3.4	3
499	High-temperature X-ray scattering studies of atomic layer deposited IrO2. <i>Journal of Applied Crystallography</i> , 2020 , 53, 369-380	3.8	1
498	Photocatalytic and Gas Sensitive Multiwalled Carbon Nanotube/TiO-ZnO and ZnO-TiO Composites Prepared by Atomic Layer Deposition. <i>Nanomaterials</i> , 2020 , 10,	5.4	9
497	Van der Waals epitaxy of continuous thin films of 2D materials using atomic layer deposition in low temperature and low vacuum conditions. <i>2D Materials</i> , 2020 , 7, 011003	5.9	13
496	Ionic conductivity in LixTaOy thin films grown by atomic layer deposition. <i>Electrochimica Acta</i> , 2020 , 361, 137019	6.7	3
495	Controlling Atomic Layer Deposition of 2D Semiconductor SnS2 by the Choice of Substrate. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2001046	4.6	4
494	Atomic Layer Deposition of PbS Thin Films at Low Temperatures. <i>Chemistry of Materials</i> , 2020 , 32, 8216-	-8,228	7
493	In Situ Reaction Mechanism Study on Atomic Layer Deposition of Intermetallic Co3Sn2 Thin Films. <i>Chemistry of Materials</i> , 2020 , 32, 8120-8128	9.6	3
492	Al2O3 Thin Films Prepared by a Combined Thermal-Plasma Atomic Layer Deposition Process at Low Temperature for Encapsulation Applications. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2020 , 217, 1900237	1.6	2

491	Preparation and in vivo evaluation of red blood cell membrane coated porous silicon nanoparticles implanted with Tb. <i>Nuclear Medicine and Biology</i> , 2020 , 84-85, 102-110	2.1	4
490	Charge carrier dynamics in tantalum oxide overlayered and tantalum doped hematite photoanodes. Journal of Materials Chemistry A, 2019 , 7, 3206-3215	13	15
489	Titania Nanotubes/Hydroxyapatite Nanocomposites Produced with the Use of the Atomic Layer Deposition Technique: Estimation of Bioactivity and Nanomechanical Properties. <i>Nanomaterials</i> , 2019 , 9,	5.4	13
488	Comparative study on the use of novel heteroleptic cyclopentadienyl-based zirconium precursors with H2O and O3 for atomic layer deposition of ZrO2. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2019 , 37, 020912	2.9	2
487	Fully Automated Online Dynamic In-Tube Extraction for Continuous Sampling of Volatile Organic Compounds in Air. <i>Analytical Chemistry</i> , 2019 , 91, 8507-8515	7.8	11
486	Intercalation of Lithium Ions from Gaseous Precursors into EMnO2 Thin Films Deposited by Atomic Layer Deposition. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 15802-15814	3.8	9
485	Studies on solid state reactions of atomic layer deposited thin films of lithium carbonate with hafnia and zirconia. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2019 , 37, 020929	2.9	5
484	Atomic Layer Deposition of Nickel Nitride Thin Films using NiCl2(TMPDA) and Tert-Butylhydrazine as Precursors. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2019 , 216, 1900058	1.6	4
483	Review Article: Atomic layer deposition of optoelectronic materials. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2019 , 37, 030801	1.3	34
482	Crystalline tungsten sulfide thin films by atomic layer deposition and mild annealing. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2019 , 37, 020921	2.9	10
481	Electrospun sodium titanate fibres for fast and selective water purification. <i>Environmental Technology (United Kingdom)</i> , 2019 , 40, 3561-3567	2.6	2
480	Atomic Layer Deposition of Emerging 2D Semiconductors, HfS2 and ZrS2, for Optoelectronics. <i>Chemistry of Materials</i> , 2019 , 31, 5713-5724	9.6	36
479	Submicron fibers as a morphological improvement of amorphous zirconium oxide particles and their utilization in antimonate (Sb(v)) removal <i>RSC Advances</i> , 2019 , 9, 22355-22365	3.7	6
478	Atomic Layer Deposition of Photoconductive CuO Thin Films. ACS Omega, 2019, 4, 11205-11214	3.9	19
477	Nickel Germanide Thin Films by Atomic Layer Deposition. <i>Chemistry of Materials</i> , 2019 , 31, 5314-5319	9.6	5
476	Toward epitaxial ternary oxide multilayer device stacks by atomic layer deposition. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2019 , 37, 020602	2.9	3
475	Low-Temperature Plasma-Enhanced Atomic Layer Deposition of SiO Using Carbon Dioxide. <i>Nanoscale Research Letters</i> , 2019 , 14, 55	5	2
474	Controlling the refractive index and third-order nonlinearity of polyimide/Ta2O5 nanolaminates for optical applications. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2019 , 37, 060908	2.9	4

(2018-2019)

473	Photoassisted atomic layer deposition of oxides employing alkoxides as single-source precursors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019 , 37, 060911	2.9	5	
472	Novel electroblowing synthesis of submicron zirconium dioxide fibers: effect of fiber structure on antimony(V) adsorption. <i>Nanoscale Advances</i> , 2019 , 1, 4373-4383	5.1	9	
471	Atomic layer deposition of cobalt(II) oxide thin films from Co(BTSA)2(THF) and H2O. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2019 , 37, 010908	2.9	1	
470	TiO Photocatalyzed Oxidation of Drugs Studied by Laser Ablation Electrospray Ionization Mass Spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2019 , 30, 639-646	3.5	9	
469	Atomic Layer Deposition of PbI2 Thin Films. <i>Chemistry of Materials</i> , 2019 , 31, 1101-1109	9.6	34	
468	Atomic Layer Deposition of Intermetallic Co3Sn2 and Ni3Sn2 Thin Films. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1801291	4.6	8	
467	Low-Temperature Wafer-Scale Deposition of Continuous 2D SnS Films. Small, 2018, 14, e1800547	11	33	
466	Zeolitic imidazole Framework-8 (ZIF-8) fibers by gas-phase conversion of electroblown zinc oxide and aluminum doped zinc oxide fibers. <i>Microporous and Mesoporous Materials</i> , 2018 , 267, 212-220	5.3	12	
465	Tracing grog and pots to reveal Neolithic Corded Ware Culture contacts in the Baltic Sea region (SEM-EDS, PIXE). <i>Journal of Archaeological Science</i> , 2018 , 91, 77-91	2.9	17	
464	Atomic Layer Deposition of Rhenium Disulfide. <i>Advanced Materials</i> , 2018 , 30, e1703622	24	45	
463	Metal oxide multilayer hard mask system for 3D nanofabrication. <i>Nanotechnology</i> , 2018 , 29, 055301	3.4	5	
462	Towards space-grade 3D-printed, ALD-coated small satellite propulsion components for fluidics. <i>Additive Manufacturing</i> , 2018 , 22, 31-37	6.1	9	
461	Patterned films by atomic layer deposition using Parafilm as a mask. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2018 , 36, 01B102	2.9	3	
460	Atomic layer deposition of lanthanum oxide with heteroleptic cyclopentadienyl-amidinate lanthanum precursor - Effect of the oxygen source on the film growth and properties. <i>Thin Solid Films</i> , 2018 , 660, 199-206	2.2	7	
459	Rhenium Metal and Rhenium Nitride Thin Films Grown by Atomic Layer Deposition. <i>Angewandte Chemie</i> , 2018 , 130, 14746-14750	3.6	2	
458	Adhesion and mechanical properties of nanocrystalline hydroxyapatite coating obtained by conversion of atomic layer-deposited calcium carbonate on titanium substrate. <i>Journal of Materials Science: Materials in Medicine</i> , 2018 , 29, 111	4.5	12	
457	Rhenium Metal and Rhenium Nitride Thin Films Grown by Atomic Layer Deposition. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 14538-14542	16.4	16	
456	Diamine Adduct of Cobalt(II) Chloride as a Precursor for Atomic Layer Deposition of Stoichiometric Cobalt(II) Oxide and Reduction Thereof to Cobalt Metal Thin Films. <i>Chemistry of Materials</i> , 2018 , 30, 34	499-350)7 ²¹	

455 Electroluminescent Phosphors **2018**,

454	Metal Fluorides as Lithium-Ion Battery Materials: An Atomic Layer Deposition Perspective. <i>Coatings</i> , 2018 , 8, 277	2.9	26
453	Atomic Layer Deposition of Molybdenum and Tungsten Oxide Thin Films Using Heteroleptic Imido-Amidinato Precursors: Process Development, Film Characterization, and Gas Sensing Properties. <i>Chemistry of Materials</i> , 2018 , 30, 8690-8701	9.6	16
452	Atomic Layer Deposition and Properties of HfO2-Al2O3 Nanolaminates. <i>ECS Journal of Solid State Science and Technology</i> , 2018 , 7, P501-P508	2	4
45 ¹	Atomic Layer Deposition and Performance of ZrO2-Al2O3Thin Films. <i>ECS Journal of Solid State Science and Technology</i> , 2018 , 7, P287-P294	2	8
450	Atomic layer deposition of crystalline molybdenum oxide thin films and phase control by post-deposition annealing. <i>Materials Today Chemistry</i> , 2018 , 9, 17-27	6.2	22
449	Enhanced process and composition control for atomic layer deposition with lithium trimethylsilanolate. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2017 , 35, 01B133	2.9	11
448	Atomic layer deposition and properties of mixed Ta2O5 and ZrO2 films. <i>AIP Advances</i> , 2017 , 7, 025001	1.5	21
447	Potential gold(I) precursors evaluated for atomic layer deposition. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2017 , 35, 01B112	2.9	13
446	Surface modification of acetaminophen particles by atomic layer deposition. <i>International Journal of Pharmaceutics</i> , 2017 , 525, 160-174	6.5	31
445	Studies on Li3AlF6 thin film deposition utilizing conversion reactions of thin films. <i>Thin Solid Films</i> , 2017 , 636, 26-33	2.2	5
444	Atomic layer deposition of tin oxide thin films from bis[bis(trimethylsilyl)amino]tin(II) with ozone and water. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2017 , 35, 041506	2.9	12
443	Atomic Layer Deposition of Crystalline MoS2 Thin Films: New Molybdenum Precursor for Low-Temperature Film Growth. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700123	4.6	75
442	As2S3 thin films deposited by atomic layer deposition. <i>Journal of Vacuum Science and Technology A:</i> Vacuum, Surfaces and Films, 2017 , 35, 01B114	2.9	8
441	TiO Photocatalysis-DESI-MS Rotating Array Platform for High-Throughput Investigation of Oxidation Reactions. <i>Analytical Chemistry</i> , 2017 , 89, 11214-11218	7.8	5
440	Atomic Layer Deposition of Zinc Glutarate Thin Films. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700512	4.6	2
439	Low-Temperature Atomic Layer Deposition of Cobalt Oxide as an Effective Catalyst for Photoelectrochemical Water-Splitting Devices. <i>Chemistry of Materials</i> , 2017 , 29, 5796-5805	9.6	32
438	Atomic Layer Deposited Protective Layers. <i>Materials Science Forum</i> , 2016 , 879, 1086-1092	0.4	2

(2016-2016)

437	Rapid production of bioactive hydroxyapatite fibers via electroblowing. <i>Journal of the European Ceramic Society</i> , 2016 , 36, 3219-3224	6	22
436	Nuclear reaction analysis for H, Li, Be, B, C, N, O and F with an RBS check. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2016 , 371, 211-215	1.2	28
435	Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layers. <i>Thin Solid Films</i> , 2016 , 611, 78-87	2.2	16
434	Atomic layer deposition of aluminum oxide on modified steel substrates. <i>Surface and Coatings Technology</i> , 2016 , 304, 1-8	4.4	10
433	Electric and Magnetic Properties of ALD-Grown BiFeO3 Films. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 7313-7322	3.8	25
432	Interfacial native oxide effects on the corrosion protection of copper coated with ALD alumina. <i>Electrochimica Acta</i> , 2016 , 193, 7-15	6.7	19
431	Corrosion protection of aluminium by ultra-thin atomic layer deposited alumina coatings. <i>Corrosion Science</i> , 2016 , 106, 16-24	6.8	50
430	Alkylsilyl compounds as enablers of atomic layer deposition: analysis of (Et3Si)3As through the GaAs process. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 449-454	7.1	2
429	Structure-Dependent Mechanical Properties of ALD-Grown Nanocrystalline BiFeO3Multiferroics. Journal of Nanomaterials, 2016 , 2016, 1-7	3.2	5
428	The role of surface preparation in corrosion protection of copper with nanometer-thick ALD alumina coatings. <i>Applied Surface Science</i> , 2016 , 387, 1054-1061	6.7	20
427	Heteroleptic Cyclopentadienyl-Amidinate Precursors for Atomic Layer Deposition (ALD) of Y, Pr, Gd, and Dy Oxide Thin Films. <i>Chemistry of Materials</i> , 2016 , 28, 5440-5449	9.6	23
426	Atomic Layer Deposition of Iridium Thin Films Using Sequential Oxygen and Hydrogen Pulses. Journal of Physical Chemistry C, 2016 , 120, 15235-15243	3.8	23
425	Low-temperature atomic layer deposition of copper(II) oxide thin films. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2016 , 34, 01A109	2.9	18
424	Scalable Route to the Fabrication of CHNHPbI Perovskite Thin Films by Electrodeposition and Vapor Conversion. <i>ACS Omega</i> , 2016 , 1, 1296-1306	3.9	32
423	Atomic Layer Deposition (ALD) grown thin films for ultra-fine pitch pixel detectors. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2016 , 831, 2-6	1.2	7
422	MANOS performance dependence on ALD Al2O3 oxidation source. <i>Microelectronic Engineering</i> , 2016 , 159, 127-131	2.5	1
421	Nucleation and Conformality of Iridium and Iridium Oxide Thin Films Grown by Atomic Layer Deposition. <i>Langmuir</i> , 2016 , 32, 10559-10569	4	24
420	Coating and functionalization of high density ion track structures by atomic layer deposition. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 832, 254-258	1.2	1

419	Selective etching of focused gallium ion beam implanted regions from silicon as a nanofabrication method. <i>Nanotechnology</i> , 2015 , 26, 265304	3.4	5
418	Atomic layer deposition of zirconium dioxide from zirconium tetrachloride and ozone. <i>Thin Solid Films</i> , 2015 , 589, 597-604	2.2	18
417	Inert ambient annealing effect on MANOS capacitor memory characteristics. <i>Nanotechnology</i> , 2015 , 26, 134004	3.4	15
416	Following the dynamics of matter with femtosecond precision using the X-ray streaking method. <i>Scientific Reports</i> , 2015 , 5, 7644	4.9	23
415	Osteogenic and osteoclastogenic differentiation of co-cultured cells in polylactic acid-nanohydroxyapatite fiber scaffolds. <i>Journal of Biotechnology</i> , 2015 , 204, 53-62	3.7	44
414	(Et3Si)2Se as a precursor for atomic layer deposition: growth analysis of thermoelectric Bi2Se3. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 4820-4828	7.1	12
413	Nitrogen induced modifications of MANOS memory properties. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2015 , 365, 61-65	1.2	1
412	High Aspect-Ratio Iridium-Coated Nanopillars for Highly Reproducible Surface-Enhanced Raman Scattering (SERS). <i>ACS Applied Materials & Ma</i>	9.5	24
411	High resolution double-sided diffractive optics for hard X-ray microscopy. <i>Optics Express</i> , 2015 , 23, 776	-863	41
410	Slot waveguide ring resonators coated by an atomic layer deposited organic/inorganic nanolaminate. <i>Optics Express</i> , 2015 , 23, 26940-51	3.3	11
409	Conduction and stability of holmium titanium oxide thin films grown by atomic layer deposition. <i>Thin Solid Films</i> , 2015 , 591, 55-59	2.2	1
408	Mechanical properties of aluminum, zirconium, hafnium and tantalum oxides and their nanolaminates grown by atomic layer deposition. <i>Surface and Coatings Technology</i> , 2015 , 282, 36-42	4.4	24
407	Electrochemical and Surface Analysis of the Corrosion Protection of Copper by Nanometer-Thick Alumina Coatings Prepared by Atomic Layer Deposition. <i>Journal of the Electrochemical Society</i> , 2015 , 162, C377-C384	3.9	17
406	MANOS erase performance dependence on nitrogen annealing conditions. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1729, 15-20		
405	Osteoclasts in the interface with electrospun hydroxyapatite. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015 , 135, 774-783	6	13
404	Needleless electrospinning with twisted wire spinneret. <i>Nanotechnology</i> , 2015 , 26, 025301	3.4	52
403	Atomic layer deposition and characterization of Billelthin films. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 2298-306	2.8	23
402	Studies on atomic layer deposition of IRMOF-8 thin films. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2015 , 33, 01A121	2.9	17

(2014-2015)

401	Impedance spectroscopy study of the unipolar and bipolar resistive switching states of atomic layer deposited polycrystalline ZrO2 thin films. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2015 , 212, 751-766	1.6	18
400	Atomic Layer Deposition of AlF3 Thin Films Using Halide Precursors. <i>Chemistry of Materials</i> , 2015 , 27, 604-611	9.6	27
399	X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution. <i>Scientific Reports</i> , 2014 , 4, 3857	4.9	228
398	In situ reaction mechanism studies on the Ti(NMe2)2(OiPr)2-D2O and Ti(OiPr)3[MeC(NiPr)2]-D2O atomic layer deposition processes. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2014 , 32, 01A121	2.9	1
397	Voltage-Dependent Properties of Titanium Dioxide Nanotubes Anodized in Solutions Containing EDTA. <i>Journal of the Electrochemical Society</i> , 2014 , 161, E61-E65	3.9	4
396	Atomic Layer Deposition of Noble Metals and Their Oxides. <i>Chemistry of Materials</i> , 2014 , 26, 786-801	9.6	244
395	Single-parameter model for the post-breakdown conduction characteristics of HoTiOx-based MIM capacitors. <i>Microelectronics Reliability</i> , 2014 , 54, 1707-1711	1.2	
394	Combining focused ion beam and atomic layer deposition in nanostructure fabrication. <i>Nanotechnology</i> , 2014 , 25, 115302	3.4	2
393	Electrospinning of calcium carbonate fibers and their conversion to nanocrystalline hydroxyapatite. <i>Materials Science and Engineering C</i> , 2014 , 45, 469-76	8.3	11
392	Holmium and titanium oxide nanolaminates by atomic layer deposition. <i>Thin Solid Films</i> , 2014 , 565, 165	-127.21	9
391	Preparation and bioactive properties of nanocrystalline hydroxyapatite thin films obtained by conversion of atomic layer deposited calcium carbonate. <i>Biointerphases</i> , 2014 , 9, 031008	1.8	11
390	Heteroleptic Precursors for Atomic Layer Deposition. <i>ECS Transactions</i> , 2014 , 64, 221-232	1	3
389	Atomic Layer Deposition of TiO2 and ZrO2 Thin Films Using Heteroleptic Guanidinate Precursors. <i>Chemical Vapor Deposition</i> , 2014 , 20, 209-216		5
388	Interface control of atomic layer deposited oxide coatings by filtered cathodic arc deposited sublayers for improved corrosion protection. <i>Materials Chemistry and Physics</i> , 2014 , 147, 895-907	4.4	8
387	Modification of Hematite Electronic Properties with Trimethyl Aluminum to Enhance the Efficiency of Photoelectrodes. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 3582-7	6.4	21
386	Sealing of hard CrN and DLC coatings with atomic layer deposition. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 1893-901	9.5	45
385	Corrosion properties of steel protected by nanometre-thick oxide coatings. <i>Corrosion Science</i> , 2014 , 82, 208-217	6.8	25
384	Atomic layer deposition, characterization, and growth mechanistic studies of TiO2 thin films. <i>Langmuir</i> , 2014 , 30, 7395-404	4	12

383	Holmium titanium oxide thin films grown by atomic layer deposition. <i>Thin Solid Films</i> , 2014 , 565, 261-26	62.2	10
382	Study of atomic layer deposited ZrO2 and ZrO2/TiO2 films for resistive switching application. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2014 , 211, 301-309	1.6	13
381	Atomic Layer Deposition 2014 , 101-123		27
380	PCRAM 2014 , 123-148		
379	Magnetic Properties of Polycrystalline Bismuth Ferrite Thin Films Grown by Atomic Layer Deposition. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 4319-23	6.4	21
378	Cyclopentadienyl Precursors for the Atomic Layer Deposition of Erbium Oxide Thin Films. <i>Chemical Vapor Deposition</i> , 2014 , 20, 217-223		7
377	Atomic-scale engineering of multifunctional nano-sized materials and films. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2014 , 211, 249-250	1.6	
376	Atomic Layer Deposition of Groups 4 and 5 Transition Metal Oxide Thin Films: Focus on Heteroleptic Precursors. <i>Chemical Vapor Deposition</i> , 2014 , 20, 189-208		22
375	Resistive Switching Behavior and Electrical Properties of TiO2:Ho2O3 and HoTiOx Based MIM Capacitors. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1691, 43		1
374	Continuous-Wave Laser Annealing of a Si/SiO2 Superlattice: Effect of the Ambient Atmosphere and Exposure Period. <i>Science of Advanced Materials</i> , 2014 , 6, 1000-1010	2.3	3
373	In Situ Studies on Reaction Mechanisms in Atomic Layer Deposition. <i>Critical Reviews in Solid State and Materials Sciences</i> , 2013 , 38, 167-202	10.1	76
372	AlxTayOz Mixture Coatings Prepared Using Atomic Layer Deposition for Corrosion Protection of Steel. <i>Chemical Vapor Deposition</i> , 2013 , 19, 194-203		13
371	Tantalum oxide nanocoatings prepared by atomic layer and filtered cathodic arc deposition for corrosion protection of steel: Comparative surface and electrochemical analysis. <i>Electrochimica Acta</i> , 2013 , 90, 232-245	6.7	71
370	Changes in the cross-country ski base properties resulting from the ski use. <i>Sports Engineering</i> , 2013 , 16, 229-238	1.4	2
369	Studies on atomic layer deposition of MOF-5 thin films. <i>Microporous and Mesoporous Materials</i> , 2013 , 182, 147-154	5.3	58
368	History of atomic layer deposition and its relationship with the American Vacuum Society. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2013 , 31, 050818	2.9	73
367	Atomic layer deposition and characterization of vanadium oxide thin films. RSC Advances, 2013, 3, 1179-	13.1 / 85	65
366	Precursors as enablers of ALD technology: Contributions from University of Helsinki. <i>Coordination Chemistry Reviews</i> , 2013 , 257, 3297-3322	23.2	63

(2012-2013)

365	Hydrogen Irgon plasma pre-treatment for improving the anti-corrosion properties of thin Al2O3 films deposited using atomic layer deposition on steel. <i>Thin Solid Films</i> , 2013 , 534, 384-393	2.2	23
364	Stopping cross sections of atomic layer deposited Al2O3 and Ta2O5 and of Si3N4 for 12C, 16O, 35Cl, 79Br and 127I ions. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2013 , 300, 1-5	1.2	5
363	The effect of oxygen source on atomic layer deposited Al2O3 as blocking oxide in metal/aluminum oxide/nitride/oxide/silicon memory capacitors. <i>Thin Solid Films</i> , 2013 , 533, 5-8	2.2	8
362	Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. <i>Journal of Applied Physics</i> , 2013 , 113, 021301	2.5	1011
361	Structural and Magnetic Studies on Iron Oxide and Iron-Magnesium Oxide Thin Films Deposited Using Ferrocene and (Dimethylaminomethyl)ferrocene Precursors. <i>ECS Journal of Solid State Science and Technology</i> , 2013 , 2, N45-N54	2	21
360	Photocatalytic Properties of WO3/TiO2 Core/Shell Nanofibers prepared by Electrospinning and Atomic Layer Deposition. <i>Chemical Vapor Deposition</i> , 2013 , 19, 149-155		58
359	Low temperature atomic layer deposition of noble metals using ozone and molecular hydrogen as reactants. <i>Thin Solid Films</i> , 2013 , 531, 243-250	2.2	38
358	In Situ Reaction Mechanism Studies on Lithium Hexadimethyldisilazide and Ozone Atomic Layer Deposition Process for Lithium Silicate. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 14241-14246	3.8	20
357	Atomic Layer Deposition of LiF Thin Films from Lithd, Mg(thd)2, and TiF4 Precursors. <i>Chemistry of Materials</i> , 2013 , 25, 1656-1663	9.6	33
356	Deposition of Copper by Plasma-Enhanced Atomic Layer Deposition Using a Novel N-Heterocyclic Carbene Precursor. <i>Chemistry of Materials</i> , 2013 , 25, 1132-1138	9.6	39
355	[Zr(NEtMe)2(guan-NEtMe)2] as a Novel Atomic Layer Deposition Precursor: ZrO2 Film Growth and Mechanistic Studies. <i>Chemistry of Materials</i> , 2013 , 25, 3088-3095	9.6	16
354	Programming nanostructured soft biological surfaces by atomic layer deposition. <i>Nanotechnology</i> , 2013 , 24, 245701	3.4	25
353	Influence of growth and annealing temperatures on the electrical properties of Nb2O5-based MIM capacitors. <i>Semiconductor Science and Technology</i> , 2013 , 28, 055005	1.8	10
352	Atomic Layer Deposition of LiF Thin Films from Lithd and TiF4 Precursors. <i>Chemical Vapor Deposition</i> , 2013 , 19, 111-116		28
351	Influence of atomic layer deposition chemistry on high-k dielectrics for charge trapping memories. <i>Solid-State Electronics</i> , 2012 , 68, 38-47	1.7	14
350	Atomic layer deposition of Ru films from bis(2,5-dimethylpyrrolyl)ruthenium and oxygen. <i>Thin Solid Films</i> , 2012 , 520, 2756-2763	2.2	24
349	Optical and Dielectric Characterization of Atomic Layer Deposited Nb2O5 Thin Films. <i>ECS Solid State Letters</i> , 2012 , 1, N1-N3		12
348	In Situ Reaction Mechanism Studies on the New tBuN=M(NEt2)3 -Water and tBuN=M(NEt2)3 - Ozone (M = Nb,Ta) Atomic Layer Deposition Processes. <i>Chemistry of Materials</i> , 2012 , 24, 1555-1561	9.6	13

347	Atomic Layer Deposition of Osmium. <i>Chemistry of Materials</i> , 2012 , 24, 55-60	9.6	33
346	Microcontact Printed RuOx Film as an Activation Layer for Selective-Area Atomic Layer Deposition of Ruthenium. <i>Chemistry of Materials</i> , 2012 , 24, 275-278	9.6	37
345	Evaluation and Comparison of Novel Precursors for Atomic Layer Deposition of Nb2O5 Thin Films. <i>Chemistry of Materials</i> , 2012 , 24, 975-980	9.6	41
344	Surface chemistry, reactivity, and pore structure of porous silicon oxidized by various methods. <i>Langmuir</i> , 2012 , 28, 10573-83	4	70
343	In Situ Reaction Mechanism Studies on Atomic Layer Deposition of AlxSiyOz from Trimethylaluminium, Hexakis(ethylamino)disilane, and Water. <i>Chemistry of Materials</i> , 2012 , 24, 3859-3	869 ⁷⁶	16
342	Atomic Layer Deposition of Aluminum and Titanium Phosphates. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 5920-5925	3.8	31
341	Cycloheptatrienyl-Cyclopentadienyl Heteroleptic Precursors for Atomic Layer Deposition of Group 4 Oxide Thin Films. <i>Chemistry of Materials</i> , 2012 , 24, 2002-2008	9.6	22
340	Passivation of copper surfaces for selective-area ALD using a thiol self-assembled monolayer. <i>Semiconductor Science and Technology</i> , 2012 , 27, 074004	1.8	40
339	Novel Heteroleptic Precursors for Atomic Layer Deposition of TiO2. <i>Chemistry of Materials</i> , 2012 , 24, 3420-3424	9.6	23
338	Double metal alkoxides of lithium: Synthesis, structure and applications in materials chemistry. <i>Coordination Chemistry Reviews</i> , 2012 , 256, 854-877	23.2	23
337	Surface fingerprints of individual silicon nanocrystals in laser-annealed Si/SiO2 superlattice: Evidence of nanoeruptions of laser-pressurized silicon. <i>Journal of Applied Physics</i> , 2012 , 111, 124302	2.5	3
336	Conformality of remote plasma-enhanced atomic layer deposition processes: An experimental study. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2012 , 30, 01A115	2.9	48
335	Study of amorphous lithium silicate thin films grown by atomic layer deposition. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2012 , 30, 01A106	2.9	35
334	Lithium Phosphate Thin Films Grown by Atomic Layer Deposition. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A259-A263	3.9	77
333			
	Spoof-like plasmonic behavior of plasma enhanced atomic layer deposition grown Ag thin films. <i>Applied Physics Letters</i> , 2012 , 100, 053106	3.4	17
332		3.4	17
33 ²	Applied Physics Letters, 2012, 100, 053106 High-performance imidolimido precursor for the atomic layer deposition of Ta2O5. Semiconductor		

329	Substrate Reactivity Effects in the Atomic Layer Deposition of Aluminum Oxide from Trimethylaluminum on Ruthenium. <i>Chemistry of Materials</i> , 2011 , 23, 3159-3168	9.6	28
328	Iridium metal and iridium oxide thin films grown by atomic layer deposition at low temperatures. Journal of Materials Chemistry, 2011 , 21, 16488		39
327	In situ Reaction Mechanism Studies on Atomic Layer Deposition of Ir and IrO2 from Ir(acac)3. <i>Chemistry of Materials</i> , 2011 , 23, 2766-2771	9.6	34
326	Nanofocusing of hard X-ray free electron laser pulses using diamond based Fresnel zone plates. <i>Scientific Reports</i> , 2011 , 1, 57	4.9	108
325	Low-temperature atomic layer deposition of Al2O3 thin coatings for corrosion protection of steel: Surface and electrochemical analysis. <i>Corrosion Science</i> , 2011 , 53, 2168-2175	6.8	162
324	Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime. <i>Optics Express</i> , 2011 , 19, 175-84	3.3	102
323	Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars. <i>Optics Express</i> , 2011 , 19, 26056-64	3.3	46
322	Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimising the annealing conditions for obtaining WO3 nanofibers. <i>Journal of Thermal Analysis and Calorimetry</i> , 2011 , 105, 73-81	4.1	79
321	Zone-Doubled Fresnel Zone Plates for Scanning Transmission X-ray Microscopy 2011 ,		2
320	Electrochemical and time-of-flight secondary ion mass spectrometry analysis of ultra-thin metal oxide (Al2O3 and Ta2O5) coatings deposited by atomic layer deposition on stainless steel. <i>Electrochimica Acta</i> , 2011 , 56, 10516-10523	6.7	63
319	Failure mechanism of thin Al2O3 coatings grown by atomic layer deposition for corrosion protection of carbon steel. <i>Electrochimica Acta</i> , 2011 , 56, 9609-9618	6.7	50
318	Crystal structures and thermal properties of some rare earth alkoxides with tertiary alcohols. <i>Journal of Thermal Analysis and Calorimetry</i> , 2011 , 105, 61-71	4.1	5
317	Photoswitchable Superabsorbency Based on Nanocellulose Aerogels. <i>Advanced Functional Materials</i> , 2011 , 21, 510-517	15.6	218
316	Integrated photocatalytic micropillar nanoreactor electrospray ionization chip for mimicking phase I metabolic reactions. <i>Lab on A Chip</i> , 2011 , 11, 1470-6	7.2	23
315	Chemical vapour deposition of In2O3 thin films from a tris-guanidinate indium precursor. <i>Dalton Transactions</i> , 2011 , 40, 9425-30	4.3	21
314	Novel materials by atomic layer deposition and molecular layer deposition. MRS Bulletin, 2011, 36, 877-	-8 <u>8.4</u>	41
313	Atomic Layer Deposition of Antimony and its Compounds Using Dechlorosilylation Reactions of Tris(triethylsilyl)antimony. <i>Chemistry of Materials</i> , 2011 , 23, 247-254	9.6	40
312	Atomic layer deposition of ferromagnetic cobalt doped titanium oxide thin films. <i>Thin Solid Films</i> , 2011 , 519, 3318-3324	2.2	14

311	Surface Enhanced Raman Scattering Enhancements from Silver Atomic Layer Deposition Coated Nanowire 2011 ,		1
310	Atomic layer deposition of ruthenium films on strontium titanate. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 8378-82	1.3	1
309	Influence of precursor chemistry and growth temperature on the electrical properties of SrTiO3-based metal-insulator-metal capacitors grown by atomic layer deposition. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2011 , 29, 01AC04	1.3	7
308	Atomic Layer Deposition of Ruthenium Films from (Ethylcyclopentadienyl)(pyrrolyl)ruthenium and Oxygen. <i>Journal of the Electrochemical Society</i> , 2011 , 158, D158	3.9	48
307	Influence of HfO2 Control Oxide ALD Precursor Chemistry for Nitride Memories. <i>Advanced Materials Research</i> , 2011 , 324, 42-45	0.5	1
306	Atomic Layer Deposition and Characterization of Aluminum Silicate Thin Films for Optical Applications. <i>Journal of the Electrochemical Society</i> , 2011 , 158, P15	3.9	13
305	Atomic Layer Deposition and Characterization of GeTe Thin Films. <i>Journal of the Electrochemical Society</i> , 2011 , 158, D694	3.9	23
304	Corrosion Protection of Steel with Oxide Nanolaminates Grown by Atomic Layer Deposition. Journal of the Electrochemical Society, 2011 , 158, C369	3.9	51
303	Investigation of ZrO[sub 2]Id[sub 2]O[sub 3] Based High-k Materials as Capacitor Dielectrics. Journal of the Electrochemical Society, 2010 , 157, G202	3.9	15
302	Charge trapping memories with atomic layer deposited high-k dielectrics capping layers. <i>Materials Research Society Symposia Proceedings</i> , 2010 , 1250, 1		
301	High Temperature Atomic Layer Deposition of Ruthenium from N,N-Dimethyl-1-ruthenocenylethylamine. <i>Journal of the Electrochemical Society</i> , 2010 , 157, D35	3.9	29
300	Atomic Layer Deposition and Characterization of Erbium Oxide-Doped Zirconium Oxide Thin Films. Journal of the Electrochemical Society, 2010 , 157, G193	3.9	10
299	2010,		3
298	High Spatial Resolution STXM at 6.2 keV Photon Energy 2010 ,		3
297	Fabrication of nanocluster silicon surface with electric discharge and the application in desorption/ionization on silicon-mass spectrometry. <i>Lab on A Chip</i> , 2010 , 10, 1689-95	7.2	
296	(MeCp)Ir(CHD) and molecular oxygen as precursors in atomic layer deposition of iridium. <i>Journal of Materials Chemistry</i> , 2010 , 20, 7669		32
295	In situ reaction mechanism studies on ozone-based atomic layer deposition of Al(2)O(3) and HfO(2). <i>ACS Applied Materials & Damp; Interfaces</i> , 2010 , 2, 347-50	9.5	40
294	Molecular organization of the tear fluid lipid layer. <i>Biophysical Journal</i> , 2010 , 99, 2559-67	2.9	59

(2009-2010)

293	In Situ Reaction Mechanism Studies on Atomic Layer Deposition of Sb2Te3 and GeTe from (Et3Si)2Te and Chlorides. <i>Chemistry of Materials</i> , 2010 , 22, 1386-1391	9.6	46	
292	Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography. <i>Nanotechnology</i> , 2010 , 21, 285305	3.4	41	
291	Reaction mechanism studies on atomic layer deposition of Nb2O5 from Nb(OEt)5 and water. <i>Langmuir</i> , 2010 , 26, 848-53	4	14	
290	Study of bismuth alkoxides as possible precursors for ALD. <i>Dalton Transactions</i> , 2010 , 39, 3219-26	4.3	37	
289	Rare earth scandate thin films by atomic layer deposition: effect of the rare earth cation size. <i>Journal of Materials Chemistry</i> , 2010 , 20, 4207		29	
288	Selective-Area Atomic Layer Deposition Using Poly(vinyl pyrrolidone) as a Passivation Layer. <i>Journal of the Electrochemical Society</i> , 2010 , 157, K10	3.9	57	
287	Electroactivity and biocompatibility of polypyrrole-hyaluronic acid multi-walled carbon nanotube composite. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 93, 1056-67	5.4	4	
286	Properties of HfO2and HfO2: Y films grown by atomic layer deposition in an advanced monocyclopentadienyl-based process. <i>IOP Conference Series: Materials Science and Engineering</i> , 2010 , 8, 012022	0.4	2	
285	Ta2O5- and TiO2-based nanostructures made by atomic layer deposition. <i>Nanotechnology</i> , 2010 , 21, 03	з5 <u>з.Q</u> 1	16	
284	Silver coated platinum core-shell nanostructures on etched Si nanowires: atomic layer deposition (ALD) processing and application in SERS. <i>ChemPhysChem</i> , 2010 , 11, 1995-2000	3.2	5	
283	Liposomes for entrapping local anesthetics: a liposome electrokinetic chromatographic study. <i>Electrophoresis</i> , 2010 , 31, 1540-9	3.6	17	
282	Growth and phase stabilization of HfO2 thin films by ALD using novel precursors. <i>Journal of Crystal Growth</i> , 2010 , 312, 245-249	1.6	53	
281	Structure and morphology of Ru films grown by atomic layer deposition from 1-ethyl-1Emethyl-ruthenocene. <i>Journal of Crystal Growth</i> , 2010 , 312, 2025-2032	1.6	21	
280	Atomic layer deposition of high capacitance density Ta2O5\(\mathbb{Z}\)rO2 based dielectrics for metal\(\mathbb{L}\)nsulator\(\mathbb{L}\)netal structures. Microelectronic Engineering, 2010, 87, 144-149	2.5	30	
279	Atomic layer deposition and characterization of zirconium oxide rbium oxide nanolaminates. <i>Thin Solid Films</i> , 2010 , 519, 666-673	2.2	12	
278	Beam-induced damage on diffractive hard X-ray optics. <i>Journal of Synchrotron Radiation</i> , 2010 , 17, 786	-9 ፬ .4	7	
277	Atomic Layer Deposition of High-Permittivity Yttrium-Doped HfO[sub 2] Films. <i>Electrochemical and Solid-State Letters</i> , 2009 , 12, G1		27	
276	Advanced X-ray diffractive optics. <i>Journal of Physics: Conference Series</i> , 2009 , 186, 012078	0.3	7	

275	Novel Zirconium Precursors for Atomic Layer Deposition of ZrO2 films. ECS Transactions, 2009, 16, 87-10	011	5
274	Behavior of zirconium oxide films processed from novel monocyclopentadienyl precursors by atomic layer deposition. <i>Journal of Vacuum Science & Technology B</i> , 2009 , 27, 226		16
273	Irradiation effect on dielectric properties of hafnium and gadolinium oxide gate dielectrics. <i>Journal of Vacuum Science & Technology B</i> , 2009 , 27, 416		17
272	Electrical properties of thin zirconium and hafnium oxide high-k gate dielectrics grown by atomic layer deposition from cyclopentadienyl and ozone precursors. <i>Journal of Vacuum Science & Technology B</i> , 2009 , 27, 389		14
271	Metallic Ir, IrO2 and Pt Nanotubes and Fibers by Electrospinning and Atomic Layer Deposition. <i>Nanoscience and Nanotechnology Letters</i> , 2009 , 1, 218-223	0.8	7
270	Atomic Layer Deposition of Materials for Phase-Change Memories. <i>ECS Transactions</i> , 2009 , 25, 399-407	1	17
269	Atomic Layer Deposition of High-k Oxides of the Group 4 Metals for Memory Applications. <i>Advanced Engineering Materials</i> , 2009 , 11, 223-234	3.5	105
268	ALD of YF3 Thin Films from TiF4 and Y(thd)3 Precursors. Chemical Vapor Deposition, 2009, 15, 27-32		23
267	Atomic Layer Deposition of Ta2O5/Polyimide Nanolaminates. Chemical Vapor Deposition, 2009, 15, 221-	226	30
266	Etching of Nb2O5 Thin Films by NbCl5. <i>Chemical Vapor Deposition</i> , 2009 , 15, NA-NA		8
265	Advanced thin film technology for ultrahigh resolution X-ray microscopy. <i>Ultramicroscopy</i> , 2009 , 109, 1360-4	3.1	99
264	Phosphopeptide enrichment with stable spatial coordination on a titanium dioxide coated glass slide. <i>Rapid Communications in Mass Spectrometry</i> , 2009 , 23, 3661-7	2.2	3
263	Atomic layer deposition of Ge2Sb2Te5 thin films. <i>Microelectronic Engineering</i> , 2009 , 86, 1946-1949	2.5	58
262	Comparison between the electrical properties of atomic layer deposited thin ZrO2 films processed from cyclopentadienyl precursors. <i>Microelectronic Engineering</i> , 2009 , 86, 1689-1691	2.5	8
261	Effect of thickness of ALD grown TiO2 films on photoelectrocatalysis. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2009 , 204, 200-208	4.7	58
260	Atomic layer deposition of metal tellurides and selenides using alkylsilyl compounds of tellurium and selenium. <i>Journal of the American Chemical Society</i> , 2009 , 131, 3478-80	16.4	132
259	A Novel Method of Quantifying the u-Shaped Pores in SBA-15. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 20349-20354	3.8	10
258	Atomic Layer Deposition of Iridium Thin Films by Consecutive Oxidation and Reduction Steps. <i>Chemistry of Materials</i> , 2009 , 21, 4868-4872	9.6	44

(2008-2009)

257	The preparation of reusable magnetic and photocatalytic composite nanofibers by electrospinning and atomic layer deposition. <i>Nanotechnology</i> , 2009 , 20, 035602	3.4	67	
256	Explosive Crystallization in Atomic Layer Deposited Mixed Titanium Oxides. <i>Crystal Growth and Design</i> , 2009 , 9, 2974-2978	3.5	36	
255	Industrial Applications of Atomic Layer Deposition. ECS Transactions, 2009, 25, 641-652	1	93	
254	Study on Atomic Layer Deposition of Amorphous Rhodium Oxide Thin Films. <i>Journal of the Electrochemical Society</i> , 2009 , 156, D418	3.9	19	
253	Alkylsilyl Compounds of Selenium and Tellurium: New Precursors for ALD. <i>ECS Transactions</i> , 2009 , 25, 609-616	1	13	
252	Selective-Area Atomic Layer Deposition Using Poly(methyl methacrylate) Films as Mask Layers. Journal of Physical Chemistry C, 2008 , 112, 15791-15795	3.8	87	
251	Atomic Layer Deposition of MgF2 Thin Films Using TaF5 as a Novel Fluorine Source. <i>Chemistry of Materials</i> , 2008 , 20, 5023-5028	9.6	38	
250	In Situ Reaction Mechanism Studies on Atomic Layer Deposition of ZrO2 from (CpMe)2Zr(OMe)Me and Water or Ozone. <i>Chemistry of Materials</i> , 2008 , 20, 5698-5705	9.6	49	
249	Atomic Layer Deposition of Iridium Oxide Thin Films from Ir(acac)3 and Ozone. <i>Chemistry of Materials</i> , 2008 , 20, 2903-2907	9.6	53	
248	Identification of spatial localization and energetic position of electrically active defects in amorphous high-k dielectrics for advanced devices. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 393-39	8 ^{3.9}	5	
247	Selection of post-growth treatment parameters for atomic layer deposition of structurally disordered TiO2 thin films. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 404-408	3.9	5	
246	Atomic layer deposition process with TiF4 as a precursor for depositing metal fluoride thin films. <i>Applied Optics</i> , 2008 , 47, C271-4	1.7	31	
245	Advanced cyclopentadienyl precursors for atomic layer deposition of ZrO2 thin films. <i>Journal of Materials Chemistry</i> , 2008 , 18, 3385		35	
244	Atomic layer deposition of photocatalytic TiO2 thin films from TiF4 and H2O. <i>Dalton Transactions</i> , 2008 , 6467-74	4.3	31	
243	Novel mixed alkylamido-cyclopentadienyl precursors for ALD of ZrO2 thin films. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5243		56	
242	Atomic Layer Deposition of Platinum Oxide and Metallic Platinum Thin Films from Pt(acac)2 and Ozone. <i>Chemistry of Materials</i> , 2008 , 20, 6840-6846	9.6	83	
241	DIELECTRIC PROPERTIES OF ATOMIC LAYER DEPOSITED THIN-FILM BARIUM STRONTIUM TITANATE. <i>Integrated Ferroelectrics</i> , 2008 , 102, 29-36	0.8	9	
240	Comparative Study of Flatband Voltage Transients on High-k Dielectric-Based Metal I hsulator B emiconductor Capacitors. <i>Journal of the Electrochemical Society</i> , 2008 , 155, G241	3.9	4	

239	Atomic Layer Deposition of LaF3 Thin Films using La(thd)3 and TiF4 as Precursors. <i>Chemical Vapor Deposition</i> , 2008 , 14, 85-91		28
238	Coating of Highly Porous Fiber Matrices by Atomic Layer Deposition. <i>Chemical Vapor Deposition</i> , 2008 , 14, 347-352		32
237	The Atomic Layer Deposition of HfO2 and ZrO2 using Advanced Metallocene Precursors and H2O as the Oxygen Source. <i>Chemical Vapor Deposition</i> , 2008 , 14, 358-365		44
236	Selective surface patterning with an electric discharge in the fabrication of microfluidic structures. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 7442-5	16.4	8
235	Surface modification of thermoplastics by atomic layer deposition of Al2O3 and TiO2 thin films. <i>European Polymer Journal</i> , 2008 , 44, 3564-3570	5.2	81
234	Selective-area atomic layer deposition with microcontact printed self-assembled octadecyltrichlorosilane monolayers as mask layers. <i>Thin Solid Films</i> , 2008 , 517, 972-975	2.2	56
233	Novel ALD Process for Depositing CaF2 Thin Films. <i>Chemistry of Materials</i> , 2007 , 19, 3387-3392	9.6	74
232	Radical Enhanced Atomic Layer Deposition of Tantalum Oxide. <i>Chemistry of Materials</i> , 2007 , 19, 2316-23	1306	19
231	A pyrazolate-based metalorganic tantalum precursor that exhibits high thermal stability and its use in the atomic layer deposition of ta(2)o(5). <i>Journal of the American Chemical Society</i> , 2007 , 129, 12370-1	16.4	36
230	Study of a novel ALD process for depositing MgF2 thin films. <i>Journal of Materials Chemistry</i> , 2007 , 17, 5077		59
229	H2S modified atomic layer deposition process for photocatalytic TiO2 thin films. <i>Journal of Materials Chemistry</i> , 2007 , 17, 1361-1371		57
228	Hollow Inorganic Nanospheres and Nanotubes with Tunable Wall Thicknesses by Atomic Layer Deposition on Self-Assembled Polymeric Templates. <i>Advanced Materials</i> , 2007 , 19, 102-106	24	118
227	Radical-Enhanced Atomic Layer Deposition of Silver Thin Films Using Phosphine-Adducted Silver Carboxylates. <i>Chemical Vapor Deposition</i> , 2007 , 13, 408-413		60
226	Atomic Layer Deposition of Titanium Disulfide Thin Films. <i>Chemical Vapor Deposition</i> , 2007 , 13, 163-168		31
225	Atomic Layer Deposition of BaTiO3 Thin Films Effect of Barium Hydroxide Formation. <i>Chemical Vapor Deposition</i> , 2007 , 13, 239-246		49
225			49
	Vapor Deposition, 2007, 13, 239-246 Radical Enhanced Atomic Layer Deposition of Titanium Dioxide. Chemical Vapor Deposition, 2007,		

(2006-2007)

221	Exploitation of atomic layer deposition for nanostructured materials. <i>Materials Science and Engineering C</i> , 2007 , 27, 1504-1508	8.3	62
220	Atomic layer deposition of ZrO2 and HfO2 on deep trenched and planar silicon. <i>Microelectronic Engineering</i> , 2007 , 84, 2010-2013	2.5	31
219	Experimental observations of temperature-dependent flat band voltage transients on high-k dielectrics. <i>Microelectronics Reliability</i> , 2007 , 47, 653-656	1.2	12
218	Si/Al2O3/ZnO:Al capacitor arrays formed in electrochemically etched porous Si by atomic layer deposition. <i>Microelectronic Engineering</i> , 2007 , 84, 313-318	2.5	36
217	Crystal structures and thermal properties of Ba(1,2,4-t-Bu3C5H2)2 and Sr(1,2,4-t-Bu3C5H2)2: Precursors for atomic layer deposition. <i>Journal of Organometallic Chemistry</i> , 2007 , 692, 5256-5262	2.3	25
216	Zone-doubling technique to produce ultrahigh-resolution x-ray optics. <i>Physical Review Letters</i> , 2007 , 99, 264801	7.4	140
215	Electrical characterization of AlxTiyOz mixtures and Al2O3IIiO2Al2O3 nanolaminates. <i>Journal of Applied Physics</i> , 2007 , 102, 114114	2.5	34
214	Electrical Characterization of High-k Dielectrics by Means of Flat-Band Voltage Transient Recording. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 996, 1		
213	Electrical Properties of Atomic-Layer-Deposited Thin Gadolinium Oxide High-k Gate Dielectrics. Journal of the Electrochemical Society, 2007 , 154, G207	3.9	34
212	Ruthenium/aerogel nanocomposites via atomic layer deposition. <i>Nanotechnology</i> , 2007 , 18, 055303	3.4	68
211	Atomic Layer Deposition of Nanostructured TiO2 Photocatalysts via Template Approach. <i>Chemistry of Materials</i> , 2007 , 19, 1816-1820	9.6	108
210	A Novel Atomic Layer Deposition Process for Depositing Metal Fluoride Thin Films 2007,		3
209	Free-standing inductive grid filter for infrared radiation rejection. <i>Microelectronic Engineering</i> , 2006 , 83, 1339-1342	2.5	9
208	Atomic Layer Deposition and Properties of Lanthanum Oxide and Lanthanum-Aluminum Dxide Films. <i>Chemical Vapor Deposition</i> , 2006 , 12, 158-164		51
207	Self-Assembled Octadecyltrimethoxysilane Monolayers Enabling Selective-Area Atomic Layer Deposition of Iridium. <i>Chemical Vapor Deposition</i> , 2006 , 12, 415-417		54
206	Ir/Oxide/Cellulose Composites for Catalytic Purposes Prepared by Atomic Layer Deposition. <i>Chemical Vapor Deposition</i> , 2006 , 12, 419-422		40
205	Rapid Coating of Through-Porous Substrates by Atomic Layer Deposition. <i>Chemical Vapor Deposition</i> , 2006 , 12, 655-658		28
204	Iridium Barriers for Direct Copper Electrodeposition in Damascene Processing. <i>Electrochemical and Solid-State Letters</i> , 2006 , 9, C48-C50		41

203	Quantum dot manipulation in a single-walled carbon nanotube using a carbon nanotube gate. <i>Applied Physics Letters</i> , 2006 , 89, 233107	3.4	5
202	Electrodeposition of Cu on Ru Barrier Layers for Damascene Processing. <i>Journal of the Electrochemical Society</i> , 2006 , 153, C37	3.9	98
201	Iridium Barriers for Direct Copper Electrodeposition in Damascene Processing. <i>ECS Transactions</i> , 2006 , 1, 57-61	1	2
200	Diffusion Barrier Properties of Atomic Layer Deposited Ultrathin Ta[sub 2]O[sub 5] and TiO[sub 2] Films. <i>Journal of the Electrochemical Society</i> , 2006 , 153, G304	3.9	30
199	HfO[sub 2] Films Grown by ALD Using Cyclopentadienyl-Type Precursors and H[sub 2]O or O[sub 3] as Oxygen Source. <i>Journal of the Electrochemical Society</i> , 2006 , 153, F39	3.9	33
198	Atomic Layer Deposition of Ferroelectric Bismuth Titanate Bi4Ti3O12 Thin Films. <i>Chemistry of Materials</i> , 2006 , 18, 3883-3888	9.6	43
197	Scale-up of the BaTiO3 ALD Process onto 200 mm Wafer. ECS Transactions, 2006, 1, 137-141	1	8
196	Rare-earth oxide thin films for gate dielectrics in microelectronics. <i>Journal of Alloys and Compounds</i> , 2006 , 418, 27-34	5.7	118
195	Experimental investigation of the electrical properties of atomic layer deposited hafnium-rich silicate films on n-type silicon. <i>Journal of Applied Physics</i> , 2006 , 100, 094107	2.5	9
194	Transparent superhydrophobic surfaces by self-assembly of hydrophobic monolayers on nanostructured surfaces. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2006 , 203, 1453-14	15 <mark>8</mark> 6	21
193	Antifouling properties of TiO2: Photocatalytic decomposition and adhesion of fatty and rosin acids, sterols and lipophilic wood extractives. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2006 , 291, 162-176	5.1	31
192	Atomic layer deposition of TiO2Nx thin films for photocatalytic applications. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2006 , 177, 68-75	4.7	105
191	Characterisation of the Al2O3 films deposited by ultrasonic spray pyrolysis and atomic layer deposition methods for passivation of 4HBiC devices. <i>Microelectronics Reliability</i> , 2006 , 46, 743-755	1.2	21
190	Atomic layer deposition of calcium oxide and calcium hafnium oxide films using calcium cyclopentadienyl precursor. <i>Thin Solid Films</i> , 2006 , 500, 322-329	2.2	29
	eyetopentadienyt preedisor. Tilli Soud Films, 2000, 300, 322 323		
189	Titania and titania-silver nanoparticle deposits made by Liquid Flame Spray and their functionality as photocatalyst for organic- and biofilm removal. <i>Catalysis Letters</i> , 2006 , 111, 127-132	2.8	43
189 188	Titania and titania-silver nanoparticle deposits made by Liquid Flame Spray and their functionality	2.8	43
	Titania and titania-silver nanoparticle deposits made by Liquid Flame Spray and their functionality as photocatalyst for organic- and biofilm removal. <i>Catalysis Letters</i> , 2006 , 111, 127-132 Destruction of Deinococcus geothermalis biofilm by photocatalytic ALD and sol-gel TiO2 surfaces.		

(2005-2005)

185	Aging of electroluminescent ZnS:Mn thin films deposited by atomic layer deposition processes. Journal of Applied Physics, 2005 , 98, 113526	2.5	12
184	Radical-Enhanced Atomic Layer Deposition of Metallic Copper Thin Films. <i>Journal of the Electrochemical Society</i> , 2005 , 152, G25	3.9	54
183	Low-Temperature Deposition of Aluminum Oxide by Radical Enhanced Atomic Layer Deposition. Journal of the Electrochemical Society, 2005 , 152, F90	3.9	63
182	Controlled growth of HfO2 thin films by atomic layer deposition from cyclopentadienyl-type precursor and water. <i>Journal of Materials Chemistry</i> , 2005 , 15, 2271		55
181	In situ quadrupole mass spectrometry study of atomic-layer deposition of ZrO2 using Cp2Zr(CH3)2 and water. <i>Langmuir</i> , 2005 , 21, 7321-5	4	38
180	Atomic layer deposition in nanometer-level replication of cellulosic substances and preparation of photocatalytic TiO2/cellulose composites. <i>Journal of the American Chemical Society</i> , 2005 , 127, 14178-9	16.4	175
179	In situ reaction mechanism studies on the atomic layer deposition of Al2O3 from (CH3)2AlCl and water. <i>Langmuir</i> , 2005 , 21, 3498-502	4	21
178	Thin Film Deposition Methods for CuInSe 2 Solar Cells. <i>Critical Reviews in Solid State and Materials Sciences</i> , 2005 , 30, 1-31	10.1	235
177	Electrical characterization of hafnium oxide and hafnium-rich silicate films grown by atomic layer deposition. <i>Microelectronics Reliability</i> , 2005 , 45, 949-952	1.2	6
176	Atomic layer deposition rate, phase composition and performance of HfO2 films on noble metal and alkoxylated silicon substrates. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2005 , 118, 112-116	3.1	18
175	Recent developments in the MOCVD and ALD of rare earth oxides and silicates. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2005 , 118, 97-104	3.1	46
174	Comparative study on electrical properties of atomic layer deposited high-permittivity materials on silicon substrates. <i>Thin Solid Films</i> , 2005 , 474, 222-229	2.2	12
173	Engineering structure and properties of hafnium oxide films by atomic layer deposition temperature. <i>Thin Solid Films</i> , 2005 , 479, 1-11	2.2	34
172	Atomic layer deposition of hafnium dioxide thin films from hafnium tetrakis(dimethylamide) and water. <i>Thin Solid Films</i> , 2005 , 491, 328-338	2.2	66
171	The growth and diffusion barrier properties of atomic layer deposited NbNx thin films. <i>Thin Solid Films</i> , 2005 , 491, 235-241	2.2	40
170	New Approach to the ALD of Bismuth Silicates; Bi(CH2SiMe3)3 Acting as a Precursor for both Bismuth and Silicon. <i>Chemical Vapor Deposition</i> , 2005 , 11, 362-367		16
169	Atomic Layer Deposition of Molybdenum Nitride Thin Films for Cu Metallizations. <i>Journal of the Electrochemical Society</i> , 2005 , 152, G361	3.9	47
168	Atomic Layer Deposition and Characterization of HfO[sub 2] Films on Noble Metal Film Substrates. Journal of the Electrochemical Society, 2005 , 152, F75	3.9	19

167	Diffractive optics in industry and research: novel components for optical security systems 2005,		1
166	ALD of Rhodium Thin Films from Rh(acac)[sub 3] and Oxygen. <i>Electrochemical and Solid-State Letters</i> , 2005 , 8, C99		49
165	Characterization of Aluminium and Titanium Oxides Deposited on 4H-SiC by Atomic Layer Deposition Technique. <i>Materials Science Forum</i> , 2005 , 483-485, 701-704	0.4	12
164	Structural and dielectric properties of thin ZrO2 films on silicon grown by atomic layer deposition from cyclopentadienyl precursor. <i>Journal of Applied Physics</i> , 2004 , 95, 84-91	2.5	66
163	Effect of selected atomic layer deposition parameters on the structure and dielectric properties of hafnium oxide films. <i>Journal of Applied Physics</i> , 2004 , 96, 5298-5307	2.5	58
162	Dielectric Permittivity and Intercalation Parameters of Li Ion Intercalated Atomic Layer Deposited ZrO[sub 2]. <i>Journal of the Electrochemical Society</i> , 2004 , 151, F54	3.9	2
161	Atomic layer deposition of noble metals: Exploration of the low limit of the deposition temperature. <i>Journal of Materials Research</i> , 2004 , 19, 3353-3358	2.5	140
160	ALD of Ta(Si)N Thin Films Using TDMAS as a Reducing Agent and as a Si Precursor. <i>Journal of the Electrochemical Society</i> , 2004 , 151, G523	3.9	11
159	Atomic Layer Deposition of Strontium Tantalate Thin Films from Bimetallic Precursors and Water. Journal of the Electrochemical Society, 2004 , 151, F69	3.9	26
158	Properties of HfO[sub 2] Thin Films Grown by ALD from Hafnium tetrakis(ethylmethylamide) and Water. <i>Journal of the Electrochemical Society</i> , 2004 , 151, F189	3.9	56
157	Synthesis and characterisation of cyclopentadienyl complexes of barium: precursors for atomic layer deposition of BaTiO3. <i>Dalton Transactions</i> , 2004 , 1181-8	4.3	47
156	Crystallization in hafnia- and zirconia-based systems. <i>Physica Status Solidi (B): Basic Research</i> , 2004 , 241, 2268-2278	1.3	134
155	Atomic Layer Deposition of Hafnium Dioxide Films from Hafnium Hydroxylamide and Water. <i>Chemical Vapor Deposition</i> , 2004 , 10, 91-96		25
154	Atomic Layer Deposition of Ruthenium Thin Films from Ru(thd)3 and Oxygen. <i>Chemical Vapor Deposition</i> , 2004 , 10, 215-219		127
153	Atomic Layer Deposition of Photocatalytic TiO2 Thin Films from Titanium Tetramethoxide and Water. <i>Chemical Vapor Deposition</i> , 2004 , 10, 143-148		190
152	Hafnium silicon oxide films prepared by atomic layer deposition. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2004 , 109, 2-5	3.1	14
151	Growth of Cu thin films by the successive ionic layer adsorption and reaction (SILAR) method. <i>Thin Solid Films</i> , 2004 , 460, 36-40	2.2	8
150	XPS and electroluminescence studies on SrS1\(\mathbb{I}\)Sex and ZnS1\(\mathbb{I}\)Sex thin films deposited by atomic layer deposition technique. <i>Journal of Crystal Growth</i> , 2004 , 260, 440-446	1.6	15

(2003-2004)

149	Evaluation of New Aminoalkoxide Precursors for Atomic Layer Deposition. Growth of Zirconium Dioxide Thin Films and Reaction Mechanism Studies. <i>Chemistry of Materials</i> , 2004 , 16, 5630-5636	9.6	27
148	Evaluation of a Praseodymium Precursor for Atomic Layer Deposition of Oxide Dielectric Films. <i>Chemistry of Materials</i> , 2004 , 16, 5162-5168	9.6	50
147	Bismuth precursors for atomic layer deposition of bismuth-containing oxide films. <i>Journal of Materials Chemistry</i> , 2004 , 14, 3191-3197		71
146	Atomic Layer Deposition of Iridium Thin Films. <i>Journal of the Electrochemical Society</i> , 2004 , 151, G489	3.9	123
145	Some recent developments in the MOCVD and ALD of high-l'dielectric oxides. <i>Journal of Materials Chemistry</i> , 2004 , 14, 3101-3112		77
144	Properties of Oxide Film Atomic Layer Deposited from Tetraethoxy Silane, Hafnium Halides, and Water. <i>Journal of the Electrochemical Society</i> , 2004 , 151, F98	3.9	23
143	Electroluminescent SrS and BaS Thin Films Deposited by ALD Using Cyclopentadienyl Precursors. Journal of the Electrochemical Society, 2004 , 151, H221	3.9	11
142	Atomic layer deposition of HfO2 thin films and nanolayered HfO2Al2O3Nb2O5 dielectrics. <i>Journal of Materials Science: Materials in Electronics</i> , 2003 , 14, 361-367	2.1	29
141	Ruthenium Thin Films Grown by Atomic Layer Deposition. <i>Chemical Vapor Deposition</i> , 2003 , 9, 45-49		219
140	Atomic Layer Deposition of Hafnium Dioxide Films Using Hafnium Bis(2-butanolate)bis(1-methoxy-2-methyl-2-propanolate) and Water. <i>Chemical Vapor Deposition</i> , 2003 , 9, 315-320		43
139	Chemie der Atomlagenabscheidung (Atomic Layer Deposition): jligste Entwicklungen. <i>Angewandte Chemie</i> , 2003 , 115, 5706-5713	3.6	30
138	Atomic layer deposition chemistry: recent developments and future challenges. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 5548-54	16.4	843
137	Rare-earth oxide thin films as gate oxides in MOSFET transistors. <i>Journal of Solid State Chemistry</i> , 2003 , 171, 170-174	3.3	98
136	Conductance transient, capacitanceNoltage and deep-level transient spectroscopy characterization of atomic layer deposited hafnium and zirconium oxide thin films. <i>Solid-State Electronics</i> , 2003 , 47, 1623-1629	1.7	18
135	Electrochemical preparation of In and Al doped ZnO thin films for CuInSe2 solar cells. <i>Thin Solid Films</i> , 2003 , 434, 20-23	2.2	55
134	Atomic layer deposition growth of zirconium doped In2O3 films. <i>Thin Solid Films</i> , 2003 , 440, 152-154	2.2	25
133	Reaction Mechanism Studies on Atomic Layer Deposition of Ruthenium and Platinum. <i>Electrochemical and Solid-State Letters</i> , 2003 , 6, C130		186
132	Atomic Layer Deposition of Hafnium Dioxide Films from 1-Methoxy-2-methyl-2-propanolate Complex of Hafnium. <i>Chemistry of Materials</i> , 2003 , 15, 1722-1727	9.6	46

131	Atomic Layer Deposition of Platinum Thin Films. <i>Chemistry of Materials</i> , 2003 , 15, 1924-1928	9.6	329
130	On the interface quality of MIS structures fabricated from Atomic Layer Deposition of HfO2, Ta2O5 and Nb2O5IIa2O5INb2O5 dielectric thin films. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 786, 3181		
129	Liquid injection MOCVD and ALD studies of Bingle source Sr-Nb and Sr-Ta precursors. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 784, 411		
128	Blue- and green-emitting SrS:Cu electroluminescent devices deposited by the atomic layer deposition technique. <i>Journal of Applied Physics</i> , 2003 , 94, 3862-3868	2.5	9
127	Atomic layer deposition. Series in Materials Science and Engineering, 2003,		1
126	Reaction Mechanism Studies on Titanium Isopropoxide Water Atomic Layer Deposition Process. <i>Chemical Vapor Deposition</i> , 2002 , 8, 21		115
125	Atomic Layer Deposition of Hafnium Dioxide Films from Hafnium Tetrakis(ethylmethylamide) and Water. <i>Chemical Vapor Deposition</i> , 2002 , 8, 199-204		174
124	Atomic layer deposition of TiO2 thin films from TiI4 and H2O. <i>Applied Surface Science</i> , 2002 , 193, 277-28	36 .7	69
123	Atomic layer deposition (ALD): from precursors to thin film structures. <i>Thin Solid Films</i> , 2002 , 409, 138-1	4 62	958
122	Influence of thickness and growth temperature on the properties of zirconium oxide films grown by atomic layer deposition on silicon. <i>Thin Solid Films</i> , 2002 , 410, 53-60	2.2	31
121	Comparison of hafnium oxide films grown by atomic layer deposition from iodide and chloride precursors. <i>Thin Solid Films</i> , 2002 , 416, 72-79	2.2	114
120	Properties of hafnium oxide films grown by atomic layer deposition from hafnium tetraiodide and oxygen. <i>Journal of Applied Physics</i> , 2002 , 92, 5698-5703	2.5	54
119	Tert-butylamine and Allylamine as Reductive Nitrogen Sources in Atomic Layer Deposition of TaN Thin Films. <i>Journal of Materials Research</i> , 2002 , 17, 107-114	2.5	34
118	Atomic-Layer Deposition of ZrO2 Thin Films Using New Alkoxide Precursors. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 716, 351		6
117	Atomic Layer Deposition of SrS and BaS Thin Films Using Cyclopentadienyl Precursors. <i>Chemistry of Materials</i> , 2002 , 14, 1937-1944	9.6	31
116	In Situ Mass Spectrometry Study on Surface Reactions in Atomic Layer Deposition of TiN and Ti(Al)N Thin Films. <i>Chemistry of Materials</i> , 2002 , 14, 281-287	9.6	26
115	Reaction Mechanism Studies on the Atomic Layer Deposition of ZrxTiyOz Using the Novel Metal HalideMetal Alkoxide Approach. <i>Langmuir</i> , 2002 , 18, 10046-10048	4	14
114	Compensation of temperature effects in quartz crystal microbalance measurements. <i>Applied Physics Letters</i> , 2002 , 80, 521-523	3.4	44

113	Atomic layer deposition 2002 , 103-159		232
112	Atomic Layer Deposition of Titanium Nitride Thin Films Using tert-Butylamine and Allylamine as Reductive Nitrogen Sources. <i>Electrochemical and Solid-State Letters</i> , 2002 , 5, C4		24
111	Atomic layer deposition of Al2O3 films using AlCl3 and Al(OiPr)3 as precursors. <i>Journal of Materials Chemistry</i> , 2002 , 12, 1415-1418		30
110	Reaction mechanism studies on the zirconium chloride water atomic layer deposition process. <i>Journal of Materials Chemistry</i> , 2002 , 12, 1484-1489		50
109	Influence of growth temperature on properties of zirconium dioxide films grown by atomic layer deposition. <i>Journal of Applied Physics</i> , 2002 , 92, 1833-1840	2.5	89
108	Atomic layer deposition of ZrO2 thin films using a new alkoxide precursor. <i>Journal of Non-Crystalline Solids</i> , 2002 , 303, 24-28	3.9	37
107	Atomic layer deposition of Al2O3, ZrO2, Ta2O5, and Nb2O5 based nanolayered dielectrics. <i>Journal of Non-Crystalline Solids</i> , 2002 , 303, 35-39	3.9	38
106	Electrochemical quartz crystal microbalance study on cyclic electrodeposition of PbS thin-films. <i>Thin Solid Films</i> , 2001 , 386, 32-40	2.2	15
105	Atomic Layer Deposition of SrTiO3 Thin Films from a Novel Strontium Precursor Strontium-bis (tri-isopropyl cyclopentadienyl). <i>Chemical Vapor Deposition</i> , 2001 , 7, 75-80		96
104	Trimethylaluminum as a Reducing Agent in the Atomic Layer Deposition of Ti(Al)N Thin Films. <i>Chemical Vapor Deposition</i> , 2001 , 7, 211		45
103	Atomic layer deposition of zirconium oxide from zirconium tetraiodide, water and hydrogen peroxide. <i>Journal of Crystal Growth</i> , 2001 , 231, 262-272	1.6	73
102	Thermogravimetric Study of Volatile Precursors For Chemical Thin Film Deposition. Estimation of vapor pressures and source temperatures. <i>Magyar Apr Mad K lem byek</i> , 2001 , 64, 955-964	О	13
101	Electrochemical Quartz Crystal Microbalance Study of the Electrodeposition Mechanisms of CuInSe[sub 2] Thin Films. <i>Journal of the Electrochemical Society</i> , 2001 , 148, C110	3.9	21
100	Atomic Layer Deposition of Ta(Al)N(C) Thin Films Using Trimethylaluminum as a Reducing Agent. Journal of the Electrochemical Society, 2001, 148, G566	3.9	48
99	(Ta1☑Nbx)2O5 films produced by atomic layer deposition: Temperature dependent dielectric spectroscopy and room-temperature I☑ characteristics. <i>Journal of Applied Physics</i> , 2001 , 90, 4532-4542	2.5	22
98	In Situ Mass Spectrometry Study on Atomic Layer Deposition from Metal (Ti, Ta, and Nb) Ethoxides and Water. <i>Chemistry of Materials</i> , 2001 , 13, 817-823	9.6	52
97	In Situ Quartz Crystal Microbalance and Quadrupole Mass Spectrometry Studies of Atomic Layer Deposition of Aluminum Oxide from Trimethylaluminum and Water. <i>Langmuir</i> , 2001 , 17, 6506-6509	4	137
96	Dielectric Properties of Zirconium Oxide Grown by Atomic Layer Deposition from Iodide Precursor. Journal of the Electrochemical Society, 2001, 148, F227	3.9	43

95	Effects of post-deposition treatments onthe photoactivity of CuInSe2 thin films deposited by the inducedco-deposition mechanism. <i>Journal of Materials Chemistry</i> , 2001 , 11, 668-672		33
94	In Situ Quadrupole Mass Spectrometry and Quartz Crystal Microbalance Studies on the Atomic Layer Deposition of Titanium Dioxide from Titanium Tetrachloride and Water. <i>Chemistry of Materials</i> , 2001 , 13, 4506-4511	9.6	90
93	Atomic Layer Deposition of Zirconium Titanium Oxide from Titanium Isopropoxide and Zirconium Chloride. <i>Chemistry of Materials</i> , 2001 , 13, 1528-1532	9.6	33
92	Development of Dielectric Properties of Niobium Oxide, Tantalum Oxide, and Aluminum Oxide Based Nanolayered Materials. <i>Journal of the Electrochemical Society</i> , 2001 , 148, F35	3.9	90
91	In situ characterization of atomic layer deposition of SrTiO3. <i>European Physical Journal Special Topics</i> , 2001 , 11, Pr3-923-Pr3-930		16
90	Electroluminescent Phosphors 2001 , 2541-2548		
89	Atomic Layer CVD in the Billio System. Chemical Vapor Deposition, 2000, 6, 139-145		48
88	Low-Temperature Deposition of Zirconium Oxide B ased Nanocrystalline Films by Alternate Supply of Zr[OC(CH3)3]4 and H2O. <i>Chemical Vapor Deposition</i> , 2000 , 6, 297-302		83
87	Atomic Layer Deposition of Titanium Oxide from Til4 and H2O2. Chemical Vapor Deposition, 2000, 6, 30	3-310	50
86	Electrochemical quartz crystal microbalance study of the electrodeposition mechanisms of Cu2\(\text{LSE} \) se thin films. <i>Electrochimica Acta</i> , 2000 , 45, 3737-3748	6.7	46
85	Influence of atomic layer deposition parameters on the phase content of Ta2O5 films. <i>Journal of Crystal Growth</i> , 2000 , 212, 459-468	1.6	48
84	PbTe electrodeposition studied by combined electrochemical quartz crystal microbalance and cyclic voltammetry. <i>Journal of Electroanalytical Chemistry</i> , 2000 , 482, 139-148	4.1	38
83	Effect of water dose on the atomic layer deposition rate of oxide thin films. <i>Thin Solid Films</i> , 2000 , 368, 1-7	2.2	227
82	Characterization of titanium dioxide atomic layer growth from titanium ethoxide and water. <i>Thin Solid Films</i> , 2000 , 370, 163-172	2.2	69
81	Titanium isopropoxide as a precursor for atomic layer deposition: characterization of titanium dioxide growth process. <i>Applied Surface Science</i> , 2000 , 161, 385-395	6.7	182
80	Atomic layer deposition of oxide thin films with metal alkoxides as oxygen sources. <i>Science</i> , 2000 , 288, 319-21	33-3	415
79	One-Step Electrodeposition of Cu[sub 2\mathbb{N}]Se and CuInSe[sub 2] Thin Films by the Induced Co-deposition Mechanism. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 1080	3.9	52
78	Use of 1,1-Dimethylhydrazine in the Atomic Layer Deposition of Transition Metal Nitride Thin Films. Journal of the Electrochemical Society, 2000 , 147, 3377	3.9	93

(1999-2000)

77	In Situ Mass Spectrometry Study on Surface Reactions in Atomic Layer Deposition of Al2O3 Thin Films from Trimethylaluminum and Water. <i>Langmuir</i> , 2000 , 16, 4034-4039	4	99
76	Atomic Layer Deposition and Chemical Vapor Deposition of Tantalum Oxide by Successive and Simultaneous Pulsing of Tantalum Ethoxide and Tantalum Chloride. <i>Chemistry of Materials</i> , 2000 , 12, 1914-1920	9.6	49
75	Electrochemical quartz crystal microbalance and cyclic voltammetry studies on PbSe electrodeposition mechanisms. <i>Journal of Materials Chemistry</i> , 2000 , 10, 519-525		23
74	Real-Time Monitoring in Atomic Layer Deposition of TiO2 from TiI4 and H2OH2O2. <i>Langmuir</i> , 2000 , 16, 8122-8128	4	40
73	Atomic Layer Deposition of Titanium Oxide from Til4 and H2O2 2000 , 6, 303		6
72	In situ characterization of atomic layer deposition processes by a mass spectrometer. <i>European Physical Journal Special Topics</i> , 1999 , 09, Pr8-1021-Pr8-1028		21
71	Photo- and electroluminescence of SrS:Cu and SrS:Ag,Cu,Ga thin films. <i>Journal of Applied Physics</i> , 1999 , 86, 5017-5025	2.5	20
70	Use of atomic layer epitaxy for fabrication of Si/TiN/Cu structures. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 1999 , 17, 2122		21
69	Improved blue luminescence in Ag-codoped SrS:Ce thin films made by atomic layer epitaxy and ion implantation. <i>Applied Physics Letters</i> , 1999 , 74, 2298-2300	3.4	8
68	Chapter 3 Materials in Thin Film Electroluminescent Devices. Semiconductors and Semimetals, 1999 , 10	7-11862	10
67	Enhanced Growth Rate in Atomic Layer Epitaxy of Indium Oxide and Indium-Tin Oxide Thin Films. <i>Electrochemical and Solid-State Letters</i> , 1999 , 1, 156		36
66	Modification of ALE-grown SrS thin films by ion implantation of Cu and codopants. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1999 , 148, 715-719	1.2	2
65	Perfectly Conformal TiN and Al2O3 Films Deposited by Atomic Layer Deposition. <i>Chemical Vapor Deposition</i> , 1999 , 5, 7-9		254
64	Properties of atomic layer deposited (Ta1\(\text{N}\) bx)2O5 solid solution films and Ta2O5\(\text{N}\)b2O5 nanolaminates. <i>Journal of Applied Physics</i> , 1999 , 86, 5656-5662	2.5	50
63	Growth of SrTiO[sub 3] and BaTiO[sub 3] Thin Films by Atomic Layer Deposition. <i>Electrochemical and Solid-State Letters</i> , 1999 , 2, 504		133
62	ALD precursor chemistry: Evolution and future challenges. <i>European Physical Journal Special Topics</i> , 1999 , 09, Pr8-837-Pr8-852		24
61	Atomic layer epitaxy - a valuable tool for nanotechnology?. <i>Nanotechnology</i> , 1999 , 10, 19-24	3.4	249
60	Atomic layer deposited thin films for corrosion protection. <i>European Physical Journal Special Topics</i> , 1999 , 09, Pr8-493-Pr8-499		63

59	Properties of [Mg2(thd)4] as a Precursor for Atomic Layer Deposition of MgO Thin Films and Crystal Structures of [Mg2(thd)4] and [Mg(thd)2(EtOH)2]. <i>Chemistry of Materials</i> , 1999 , 11, 1846-1852	9.6	44
58	Cyclic Electrodeposition of PbS Thin Films. <i>Journal of the Electrochemical Society</i> , 1999 , 146, 2522-2525	3.9	20
57	Controlled Growth of TaN, Ta3N5, and TaOxNy Thin Films by Atomic Layer Deposition. <i>Chemistry of Materials</i> , 1999 , 11, 1712-1718	9.6	150
56	Niobium Oxide Thin Films Grown by Atomic Layer Epitaxy. <i>Chemical Vapor Deposition</i> , 1998 , 4, 29-34		26
55	Atomic Layer Epitaxy Growth of BaS and BaS:Ce Thin Films from In Situ Synthesized Ba(thd)2. <i>Chemical Vapor Deposition</i> , 1998 , 4, 227-233		7
54	Influence of sol and surface properties on in vitro bioactivity of sol-gel-derived TiO2 and TiO2-SiO2 films deposited by dip-coating method. <i>Journal of Biomedical Materials Research Part B</i> , 1998 , 42, 295-3	02	112
53	Electrodeposition of PbTe thin films. <i>Thin Solid Films</i> , 1998 , 326, 78-82	2.2	58
52	Electrodeposition of lead selenide thin films. <i>Journal of Materials Chemistry</i> , 1998 , 8, 651-654		59
51	Elemental characterization of electroluminescent SrS:Ce thin films. <i>Journal of Applied Physics</i> , 1998 , 84, 1029-1035	2.5	14
50	Deposition of molybdenum thin films by an alternate supply of MoCl5 and Zn. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1998 , 16, 2845-2850	2.9	32
49	Solid Solution CdxZn1-xS Thin Films Grown by Atomic Layer Epitaxy and Successive Ionic Layer Adsorption and Reaction Techniques. <i>Materials Science Forum</i> , 1998 , 287-288, 367-372	0.4	2
48	Atomic Layer Epitaxy Growth of TiN Thin Films from Til4 and NH 3. <i>Journal of the Electrochemical Society</i> , 1998 , 145, 2914-2920	3.9	64
47	Niobium Oxide Thin Films Grown by Atomic Layer Epitaxy. <i>Chemical Vapor Deposition</i> , 1998 , 04, 29-34		53
46	Atomic Layer Epitaxy Growth of BaS and BaS:Ce Thin Films from In Situ Synthesized Ba(thd)2. <i>Chemical Vapor Deposition</i> , 1998 , 04, 227-233		18
45	Deposition of copper films by an alternate supply of CuCl and Zn. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1997 , 15, 2330-2333	2.9	59
44	Fluorine Implantation of Atomic Layer Epitaxy Grown In2 O 3 Films. <i>Journal of the Electrochemical Society</i> , 1997 , 144, L140-L141	3.9	2
43	Properties of Ta2 O 5-Based Dielectric Nanolaminates Deposited by Atomic Layer Epitaxy. <i>Journal of the Electrochemical Society</i> , 1997 , 144, 300-306	3.9	107
42	[Ca(Thd)2(Tetraen)]: A Monomeric Precursor for Deposition of CaS Thin Films. <i>Chemistry of Materials</i> , 1997 , 9, 1234-1240	9.6	27

41	Atomic layer epitaxy growth of aluminum oxide thin films from a novel Al(CH3)2Cl precursor and H2O. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1997 , 15, 2214-2218	2.9	85
40	Properties of (Nb1 lkTax)2O5 solid solutions and (Nb1 lkTax)2O5-ZrO2 nanolaminates grown by Atomic Layer Epitaxy. <i>Scripta Materialia</i> , 1997 , 8, 785-793		37
39	In situ study of atomic layer epitaxy growth of tantalum oxide thin films from Ta(OC2H5)5 and H2O. <i>Applied Surface Science</i> , 1997 , 112, 236-242	6.7	66
38	Effects of intermediate zinc pulses on properties of TiN and NbN films deposited by atomic layer epitaxy. <i>Applied Surface Science</i> , 1997 , 120, 199-212	6.7	40
37	Complementary analysis of ALE-grown SrS based thin film electroluminescent structures with ion beam methods. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1997 , 132, 685-696	1.2	9
36	ALE growth of ZnS1\(\mathbb{Z}\)Sex thin films by substituting surface sulfur with elemental selenium. <i>Applied Surface Science</i> , 1997 , 112, 154-158	6.7	19
35	Modifying ALE grown In2O3 films by benzoyl fluoride pulses. <i>Applied Surface Science</i> , 1997 , 112, 231-235	5 6.7	22
34	Advanced ALE processes of amorphous and polycrystalline films. <i>Applied Surface Science</i> , 1997 , 112, 223	23 0	77
33	AFM studies on ZnS thin films grown by atomic layer epitaxy. <i>Applied Surface Science</i> , 1997 , 120, 43-50	6.7	82
32	ALE Growth of Transparent Conductors. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 426, 513		31
31	Characterization of etching procedure in preparation of CdTe solar cells. <i>Solar Energy Materials and Solar Cells</i> , 1996 , 44, 177-190	6.4	38
30	Low temperature deposition of AIN films by an alternate supply of trimethyl aluminum and ammonia. <i>Chemical Vapor Deposition</i> , 1996 , 2, 277-283		54
29	AFM and STM studies on In2O3 and ITO thin films deposited by atomic layer epitaxy. <i>Applied Surface Science</i> , 1996 , 99, 91-98	6.7	33
28	Synthesis of oxide thin films and overlayers by atomic layer epitaxy for advanced applications. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1996 , 41, 23-29	3.1	117
27	Introducing atomic layer epitaxy for the deposition of optical thin films. Thin Solid Films, 1996, 289, 250-	255	69
26	Studies on the morphology of Al2O3 thin films grown by atomic layer epitaxy. <i>Thin Solid Films</i> , 1996 , 286, 54-58	2.2	49
25	Analysis of AlN thin films by combining TOF-ERDA and NRB techniques. <i>Thin Solid Films</i> , 1996 , 289, 159-7	12625	55
24	Tailoring the dielectric properties of HfO2Ta2O5 nanolaminates. <i>Applied Physics Letters</i> , 1996 , 68, 3737-	3.7439	194

23	ALE deposition of indium tin oxide thin films. <i>Vacuum</i> , 1995 , 46, 887	3.7	4
22	Atomic Layer Epitaxy Growth of AIN Thin Films. European Physical Journal Special Topics, 1995, 05, C5-1	021-C5	5-18027
21	Atomic Layer Epitaxy in Deposition of Various Oxide and Nitride Thin Films. <i>European Physical Journal Special Topics</i> , 1995 , 05, C5-937-C5-951		13
20	Atomic Layer Epitaxy Growth of TiN Thin Films. <i>Journal of the Electrochemical Society</i> , 1995 , 142, 2731-	27,3.7	125
19	Growth of Indium-Tin-Oxide Thin Films by Atomic Layer Epitaxy. <i>Journal of the Electrochemical Society</i> , 1995 , 142, 3538-3541	3.9	38
18	Atomic Layer Epitaxy Growth of Tantalum Oxide Thin Films from Ta (OC 2 H 5) 5 and H 2 O. Journal of the Electrochemical Society, 1995 , 142, 1670-1675	3.9	112
17	Comparison Between CVD and ALE Produced TiO2 Cathodes in Zn/(PEO)4ZnCl2/TiO2,SnO2 or ITO Galvanic Cells. <i>European Physical Journal Special Topics</i> , 1995 , 05, C5-1133-C5-1139		2
16	Growth of In2 O 3 Thin Films by Atomic Layer Epitaxy. <i>Journal of the Electrochemical Society</i> , 1994 , 141, 3210-3213	3.9	59
15	Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy. <i>Thin Solid Films</i> , 1994 , 250, 72-80	2.2	175
14	Surface roughness reduction in atomic layer epitaxy growth of titanium dioxide thin films. <i>Thin Solid Films</i> , 1994 , 249, 155-162	2.2	44
13	Zirconium dioxide thin films deposited by ALE using zirconium tetrachloride as precursor. <i>Applied Surface Science</i> , 1994 , 75, 333-340	6.7	137
12	Growth of In2S3 thin films by atomic layer epitaxy. <i>Applied Surface Science</i> , 1994 , 82-83, 122-125	6.7	115
11	NbCl5 as a precursor in atomic layer epitaxy. <i>Applied Surface Science</i> , 1994 , 82-83, 468-474	6.7	45
10	Atomic layer epitaxy growth of titanium dioxide thin films from titanium ethoxide. <i>Chemistry of Materials</i> , 1994 , 6, 556-561	9.6	95
9	Titanium isopropoxide as a precursor in atomic layer epitaxy of titanium dioxide thin films. <i>Chemistry of Materials</i> , 1993 , 5, 1174-1181	9.6	259
8	The Effect of Calcination on the Surface Composition and Structure of Titanium Dioxide Coated Mica Particles. <i>Journal of Solid State Chemistry</i> , 1993 , 103, 160-169	3.3	10
7	Atomic force microscopy study of titanium dioxide thin films grown by atomic layer epitaxy. <i>Thin Solid Films</i> , 1993 , 228, 32-35	2.2	76
6	Thernoanalytical studies on TiO2-mica pigments. <i>Thermochimica Acta</i> , 1993 , 214, 19-26	2.9	3

LIST OF PUBLICATIONS

5	Growth of titanium dioxide thin films by atomic layer epitaxy. <i>Thin Solid Films</i> , 1993 , 225, 288-295	2	276
4	Electrical characterization of atomic-layer-deposited hafnium silicate for alternative gate dielectric applic	atior	11
3	Chapter 4:Atomic Layer Deposition158-206		5
2	Poster: Advances in Technology and Characterization665-692		
1	Molecular Layer Deposition of Thermally Stable Polybenzimidazole-Like Thin Films and Nanostructures. <i>Advanced Materials Interfaces</i> ,2200370	6	