Théophile Chaumont-Frelet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5367839/publications.pdf

Version: 2024-02-01

20 papers 180 citations

8 h-index 1125743 13 g-index

20 all docs

20 docs citations

20 times ranked

87 citing authors

#	Article	IF	CITATIONS
1	Stable broken ?(????) polynomial extensions and ?-robust a posteriori error estimates by broken patchwise equilibration for the curl–curl problem. Mathematics of Computation, 2022, 91, 37-74.	2.1	6
2	Image Segmentation with a Priori Conditions: Applications to Medical and Geophysical Imaging. Mathematical and Computational Applications, 2022, 27, 26.	1.3	3
3	Frequency-explicit approximability estimates for time-harmonic Maxwell's equations. Calcolo, 2022, 59,	1.1	3
4	On the derivation of guaranteed and p-robust a posteriori error estimates for the Helmholtz equation. Numerische Mathematik, 2021, 148, 525-573.	1.9	9
5	A posteriori error estimates for finite element discretizations of time-harmonic Maxwell's equations coupled with a non-local hydrodynamic Drude model. Computer Methods in Applied Mechanics and Engineering, 2021, 385, 114002.	6.6	1
6	Equivalence of local-best and global-best approximations in H(curl). Calcolo, 2021, 58, 1.	1.1	13
7	Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems. IMA Journal of Numerical Analysis, 2020, 40, 1503-1543.	2.9	29
8	A painless automatic hp-adaptive strategy for elliptic problems. Finite Elements in Analysis and Design, 2020, 178, 103424.	3.2	8
9	A Multiscale Hybrid-Mixed Method for the Helmholtz Equation in Heterogeneous Domains. SIAM Journal on Numerical Analysis, 2020, 58, 1029-1067.	2.3	7
10	Polynomial-degree-robust <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>H</mml:mi><mml:mo>(<td>o><mml:n< td=""><td>ni) Tj ETQq0 0 (</td></mml:n<></td></mml:mo></mml:mrow></mml:math>	o> <mml:n< td=""><td>ni) Tj ETQq0 0 (</td></mml:n<>	ni) Tj ETQq0 0 (
10	Polynomial-degree-robust <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>H</mml:mi><mml:mo>(<td>o><mml:n< td=""><td>ni) Tj ETQq0 0 (</td></mml:n<></td></mml:mo></mml:mrow></mml:math>	o> <mml:n< td=""><td>ni) Tj ETQq0 0 (</td></mml:n<>	ni) Tj ETQq0 0 (
	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>H</mml:mi><mml:mo>(<td>0.3</td><td>3</td></mml:mo></mml:mrow>	0.3	3
11	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>H</mml:mi><mml:mo>(<td>0.8</td><td>4</td></mml:mo></mml:mrow>	0.8	4
11 12	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>H</mml:mi><mml:mo>(<td>0.8</td><td>7</td></mml:mo></mml:mrow>	0.8	7
11 12 13	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>H</mml:mi><mml:mo>(<td>0.8</td><td>7</td></mml:mo></mml:mrow>	0.8	7
11 12 13	xm[ns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>H</mml:mi><mml:mo>(<td>0.8 1.1 2.4 1.9</td><td>4 7 1 20</td></mml:mo></mml:mrow>	0.8 1.1 2.4 1.9	4 7 1 20
11 12 13 14	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>H</mml:mi><mml:mo>(<td>0.8 1.1 2.4 1.9</td><td>4 7 1 20 8</td></mml:mo></mml:mrow>	0.8 1.1 2.4 1.9	4 7 1 20 8

#	Article	IF	CITATIONS
19	Multiscale Medium Approximation: Application to Geophysical Benchmarks. , 2016, , .		0
20	Upscaling for the Laplace problem using a discontinuous Galerkin method. Journal of Computational and Applied Mathematics, 2013, 240, 192-203.	2.0	1