List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5367789/publications.pdf Version: 2024-02-01

Ринни Млыс

#	Article	IF	CITATIONS
1	Microenvironments Enabled by Covalent Organic Framework Linkages for Modulating Active Metal Species in Photocatalytic CO ₂ Reduction. Advanced Functional Materials, 2022, 32, .	14.9	59
2	Transformation of Covalent Organic Frameworks from <i>N</i> â€Acylhydrazone to Oxadiazole Linkages for Smooth Electron Transfer in Photocatalysis. Angewandte Chemie, 2022, 134, .	2.0	8
3	Transformation of Covalent Organic Frameworks from <i>N</i> â€Acylhydrazone to Oxadiazole Linkages for Smooth Electron Transfer in Photocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	59
4	Photoelectron Transfer Mediated by the Interfacial Electron Effects for Boosting Visible-Light-Driven CO ₂ Reduction. ACS Catalysis, 2022, 12, 3550-3557.	11.2	83
5	Accelerating water oxidation kinetics via synergistic in-layer modification and interlayer reconstruction over hetero-epitaxial Fe-Mn-O nanosheets. Chemical Engineering Journal, 2022, 441, 136122.	12.7	10
6	POM-assisted coating of MOF-derived Mo-doped Co3O4 nanoparticles on carbon nanotubes for upgrading oxygen evolution reaction. Chemical Engineering Journal, 2021, 408, 127352.	12.7	72
7	Recent advances in non-precious metal electrocatalysts for pH-universal hydrogen evolution reaction. Green Energy and Environment, 2021, 6, 458-478.	8.7	79
8	Ultrafine cobalt-ruthenium alloy nanoparticles induced by confinement effect for upgrading hydrogen evolution reaction in all-pH range. Chemical Engineering Journal, 2021, 417, 128047.	12.7	26
9	Metal–Organic Framework-Derived CuS Nanocages for Selective CO ₂ Electroreduction to Formate. CCS Chemistry, 2021, 3, 199-207.	7.8	23
10	The Electrostatic Attraction and Catalytic Effect Enabled by Ionic–Covalent Organic Nanosheets on MXene for Separator Modification of Lithium–Sulfur Batteries. Advanced Materials, 2021, 33, e2007803.	21.0	133
11	Regulating Utilization Efficiency of the Photogenerated Charge Carriers by Constructing Donor‑l€â€"Acceptor Polymers for Upgrading Photocatalytic CO ₂ Reduction. ChemSusChem, 2021, 14, 2749-2756.	6.8	12
12	Engineering Synergistic Edgeâ€N Dipole in Metalâ€Free Carbon Nanoflakes toward Intensified Oxygen Reduction Electrocatalysis. Advanced Functional Materials, 2021, 31, 2103187.	14.9	54
13	The Interfacial Electronic Engineering in Binary Sulfiphilic Cobalt Boride Heterostructure Nanosheets for Upgrading Energy Density and Longevity of Lithiumâ€Sulfur Batteries. Advanced Materials, 2021, 33, e2102338.	21.0	83
14	Engineering interfacial coupling between Mo2C nanosheets and Co@NC polyhedron for boosting electrocatalytic water splitting and zinc-air batteries. Applied Catalysis B: Environmental, 2021, 296, 120360.	20.2	79
15	Ammonia-free fabrication of ultrafine vanadium nitride nanoparticles as interfacial mediators for promoting electrochemical behaviors of lithium–sulfur batteries. Nanoscale, 2021, 13, 5292-5299.	5.6	15
16	Chemically Activating Tungsten Disulfide <i>via</i> Structural and Electronic Engineering Strategy for Upgrading the Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2021, 13, 49793-49801.	8.0	12
17	lonicâ€Liquidâ€Modified Clickâ€Based Porous Organic Polymers for Controlling Capture and Catalytic Conversion of CO ₂ . ChemSusChem, 2020, 13, 180-187.	6.8	65
18	Enhanced Chemisorption and Catalytic Effects toward Polysulfides by Modulating Hollow Nanoarchitectures for Longâ€Life Lithium–Sulfur Batteries. Small, 2020, 16, e1906114.	10.0	48

#	Article	IF	CITATIONS
19	High sulfur content and volumetric capacity promised by a compact freestanding cathode for high-performance lithium–sulfur batteries. Energy Storage Materials, 2020, 27, 435-442.	18.0	39
20	Carbon Dioxide Conversion Upgraded by Hostâ€guest Cooperation between Nitrogenâ€Rich Covalent Organic Framework and Imidazoliumâ€Based Ionic Polymer. ChemSusChem, 2020, 13, 6050-6050.	6.8	5
21	Carbon Dioxide Conversion Upgraded by Hostâ€guest Cooperation between Nitrogenâ€Rich Covalent Organic Framework and Imidazoliumâ€Based Ionic Polymer. ChemSusChem, 2020, 13, 6323-6329.	6.8	48
22	Metalloporphyrin-based covalent organic frameworks composed of the electron donor-acceptor dyads for visible-light-driven selective CO2 reduction. Science China Chemistry, 2020, 63, 1289-1294.	8.2	73
23	MOF-aided topotactic transformation into nitrogen-doped porous Mo ₂ C mesocrystals for upgrading the pH-universal hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 20429-20435.	10.3	24
24	Recent Advances on Metalloporphyrinâ€Based Materials for Visibleâ€Lightâ€Driven CO ₂ Reduction. ChemSusChem, 2020, 13, 6124-6140.	6.8	49
25	A non-carbon catalyst support upgrades the intrinsic activity of ruthenium for hydrogen evolution electrocatalysis via strong interfacial electronic effects. Nano Energy, 2020, 75, 104981.	16.0	39
26	Robust ruthenium diphosphide nanoparticles for pH-universal hydrogen evolution reaction with platinum-like activity. Applied Catalysis B: Environmental, 2020, 274, 119092.	20.2	69
27	Covalent Organic Framework Hosting Metalloporphyrinâ€Based Carbon Dots for Visibleâ€Lightâ€Driven Selective CO ₂ Reduction. Advanced Functional Materials, 2020, 30, 2002654.	14.9	125
28	Facile fabrication of ultrafine nickel-iridium alloy nanoparticles/graphene hybrid with enhanced mass activity and stability for overall water splitting. Journal of Energy Chemistry, 2020, 49, 166-173.	12.9	50
29	Ultrahigh volumetric capacity enabled by dynamic evolutions of host-guest pairs in self-supporting lithium-sulfur batteries. Nano Energy, 2020, 70, 104522.	16.0	40
30	Flexible Porous Organic Polymer Membranes for Protonic Field‣ffect Transistors. Advanced Materials, 2020, 32, e2000730.	21.0	47
31	A Covalent Triazineâ€Based Framework Consisting of Donor–Acceptor Dyads for Visibleâ€Lightâ€Driven Photocatalytic CO ₂ Reduction. ChemSusChem, 2019, 12, 4493-4499.	6.8	110
32	Separator Modified by Cobaltâ€Embedded Carbon Nanosheets Enabling Chemisorption and Catalytic Effects of Polysulfides for Highâ€Energyâ€Density Lithiumâ€Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1901609.	19.5	158
33	Robust ultrafine ruthenium nanoparticles enabled by covalent organic gel precursor for selective reduction of nitrobenzene in water. Dalton Transactions, 2019, 48, 2345-2351.	3.3	6
34	MXene-engineered lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 22730-22743.	10.3	174
35	Flexible Cathode Materials Enabled by a Multifunctional Covalent Organic Gel for Lithium–Sulfur Batteries with High Areal Capacities. ACS Applied Materials & Interfaces, 2019, 11, 8032-8039.	8.0	24
36	Dyadic promotion of photocatalytic aerobic oxidation <i>via</i> the Mott–Schottky effect enabled by nitrogen-doped carbon from imidazolium-based ionic polymers. Energy and Environmental Science, 2019, 12, 418-426.	30.8	67

#	Article	IF	CITATIONS
37	Engineered Interfusion of Hollow Nitrogenâ€Doped Carbon Nanospheres for Improving Electrochemical Behavior and Energy Density of Lithium–Sulfur Batteries. Advanced Functional Materials, 2019, 29, 1902322.	14.9	125
38	Engineering MoS ₂ Basal Planes for Hydrogen Evolution via Synergistic Ruthenium Doping and Nanocarbon Hybridization. Advanced Science, 2019, 6, 1900090.	11.2	148
39	Ultrafine Ti ₃ C ₂ MXene Nanodots-Interspersed Nanosheet for High-Energy-Density Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 3608-3617.	14.6	235
40	Synchronous Gains of Areal and Volumetric Capacities in Lithium–Sulfur Batteries Promised by Flower-like Porous Ti ₃ C ₂ T _{<i>x</i>} Matrix. ACS Nano, 2019, 13, 3404-3412.	14.6	153
41	Urea-Functionalized Imidazolium-Based Ionic Polymer for Chemical Conversion of CO ₂ into Organic Carbonates. ACS Sustainable Chemistry and Engineering, 2019, 7, 2380-2387.	6.7	60
42	Water-Soluble and Low-Toxic Ionic Polymer Dots as Invisible Security Ink for MultiStage Information Encryption. ACS Applied Materials & amp; Interfaces, 2019, 11, 1480-1486.	8.0	39
43	Molybdenum Phosphide/Carbon Nanotube Hybrids as pHâ€Universal Electrocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials, 2018, 28, 1706523.	14.9	185
44	Nanohybrid of Carbon Quantum Dots/Molybdenum Phosphide Nanoparticle for Efficient Electrochemical Hydrogen Evolution in Alkaline Medium. ACS Applied Materials & Interfaces, 2018, 10, 9460-9467.	8.0	80
45	Electrostatic trapping of polysulfides enabled by imidazolium-based ionic polymers for high-energy-density lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 7375-7381.	10.3	30
46	Lithium Sulfur Batteries: Elastic Sandwich-Type rGO-VS2 /S Composites with High Tap Density: Structural and Chemical Cooperativity Enabling Lithium-Sulfur Batteries with High Energy Density (Adv. Energy Mater. 10/2018). Advanced Energy Materials, 2018, 8, 1870046.	19.5	6
47	Covalent organic frameworks with lithiophilic and sulfiphilic dual linkages for cooperative affinity to polysulfides in lithium-sulfur batteries. Energy Storage Materials, 2018, 12, 252-259.	18.0	117
48	Highly Dispersed Ultrafine Palladium Nanoparticles Enabled by Functionalized Porous Organic Polymer for Additiveâ€Free Dehydrogenation of Formic Acid. ChemCatChem, 2018, 10, 1431-1437.	3.7	25
49	Elastic Sandwichâ€Type rGO–VS ₂ /S Composites with High Tap Density: Structural and Chemical Cooperativity Enabling Lithium–Sulfur Batteries with High Energy Density. Advanced Energy Materials, 2018, 8, 1702337.	19.5	227
50	Porous Organic Polymers for Polysulfide Trapping in Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1707597.	14.9	154
51	General Synthetic Route toward Highly Dispersed Ultrafine Pd–Au Alloy Nanoparticles Enabled by Imidazolium-Based Organic Polymers. ACS Applied Materials & Interfaces, 2018, 10, 776-786.	8.0	41
52	Hollow POM@MOF hybrid-derived porous Co ₃ O ₄ /CoMoO ₄ nanocages for enhanced electrocatalytic water oxidation. Journal of Materials Chemistry A, 2018, 6, 1639-1647.	10.3	156
53	Facile fabrication of Cu-based alloy nanoparticles encapsulated within hollow octahedral N-doped porous carbon for selective oxidation of hydrocarbons. Chemical Science, 2018, 9, 8703-8710.	7.4	35
54	General Construction of Molybdenumâ€Based Nanowire Arrays for pHâ€Universal Hydrogen Evolution Electrocatalysis. Advanced Functional Materials, 2018, 28, 1804600.	14.9	134

#	Article	IF	CITATIONS
55	Additive-Free Hydrogen Generation from Formic Acid Boosted by Amine-Functionalized Imidazolium-Based Ionic Polymers. ACS Sustainable Chemistry and Engineering, 2018, 6, 10421-10428.	6.7	17
56	Designed Construction of Cluster Organic Frameworks from Lindqvist-type Polyoxovanadate Cluster. Inorganic Chemistry, 2018, 57, 10323-10330.	4.0	52
57	Structure–Activity Relationships of AMn ₂ O ₄ (A = Cu and Co) Spinels in Selective Catalytic Reduction of NO _{<i>x</i>} : Experimental and Theoretical Study. Journal of Physical Chemistry C, 2017, 121, 3339-3349.	3.1	62
58	Geometrical-Site-Dependent Catalytic Activity of Ordered Mesoporous Co-Based Spinel for Benzene Oxidation: In Situ DRIFTS Study Coupled with Raman and XAFS Spectroscopy. ACS Catalysis, 2017, 7, 1626-1636.	11.2	281
59	Highly Conductive Porous Transition Metal Dichalcogenides via Water Steam Etching for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 18845-18855.	8.0	57
60	The Fusion of Imidazoliumâ€Based Ionic Polymer and Carbon Nanotubes: One Type of New Heteroatomâ€Doped Carbon Precursors for Highâ€Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2017, 27, 1703936.	14.9	98
61	Imidazolium―and Triazineâ€Based Porous Organic Polymers for Heterogeneous Catalytic Conversion of CO ₂ into Cyclic Carbonates. ChemSusChem, 2017, 10, 4855-4863.	6.8	89
62	Palladium Nanoparticles Supported by Carboxylate-Functionalized Porous Organic Polymers for Additive-Free Hydrogen Generation from Formic Acid. ACS Sustainable Chemistry and Engineering, 2017, 5, 8061-8069.	6.7	25
63	Covalent Organic Gels: Inorganic Acidâ€Impregnated Covalent Organic Gels as Highâ€Performance Protonâ€Conductive Materials at Subzero Temperatures (Adv. Funct. Mater. 32/2017). Advanced Functional Materials, 2017, 27, .	14.9	0
64	Inorganic Acidâ€Impregnated Covalent Organic Gels as Highâ€Performance Protonâ€Conductive Materials at Subzero Temperatures. Advanced Functional Materials, 2017, 27, 1701465.	14.9	80
65	Sandwich-Type NbS ₂ @S@I-Doped Graphene for High-Sulfur-Loaded, Ultrahigh-Rate, and Long-Life Lithium–Sulfur Batteries. ACS Nano, 2017, 11, 8488-8498.	14.6	174
66	Lithium–Sulfur Batteries: The Fusion of Imidazoliumâ€Based Ionic Polymer and Carbon Nanotubes: One Type of New Heteroatomâ€Doped Carbon Precursors for Highâ€Performance Lithium–Sulfur Batteries (Adv. Funct. Mater. 44/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
67	Heteroatomâ€doped Carbon Spheres from Hierarchical Hollow Covalent Organic Framework Precursors for Metalâ€Free Catalysis. ChemSusChem, 2017, 10, 4921-4926.	6.8	75
68	Facile Synthesis and Tunable Porosities of Imidazoliumâ€Based Ionic Polymers that Contain Inâ€Situ Formed Palladium Nanoparticles. ChemCatChem, 2016, 8, 2234-2240.	3.7	19
69	Imidazolium-Based Porous Organic Polymers: Anion Exchange-Driven Capture and Luminescent Probe of Cr ₂ O ₇ ^{2–} . ACS Applied Materials & Interfaces, 2016, 8, 18904-18911.	8.0	105
70	LaCoO ₃ perovskite in Pt/LaCoO ₃ /K/Al ₂ O ₃ for the improvement of NO _x storage and reduction performances. RSC Advances, 2016, 6, 74046-74052.	3.6	17
71	Prefunctionalized Porous Organic Polymers: Effective Supports of Surface Palladium Nanoparticles for the Enhancement of Catalytic Performances in Dehalogenation. Chemistry - A European Journal, 2016, 22, 12533-12541.	3.3	28
72	Gold nanoparticles supported by imidazolium-based porous organic polymers for nitroarene reduction. Dalton Transactions, 2016, 45, 16896-16903.	3.3	37

#	Article	IF	CITATIONS
73	A durable luminescent ionic polymer for rapid detection and efficient removal of toxic Cr ₂ O ₇ ^{2â~} . Journal of Materials Chemistry A, 2016, 4, 12554-12560.	10.3	49
74	Hollow click-based porous organic polymers for heterogenization of [Ru(bpy)3]2+ through electrostatic interactions. Nano Research, 2016, 9, 779-786.	10.4	23
75	Tailor-made porosities of fluorene-based porous organic frameworks for the pre-designable fabrication of palladium nanoparticles with size, location and distribution control. Chemical Science, 2016, 7, 2188-2194.	7.4	84
76	Effects of hydroxy substituents on Cu(<scp>ii</scp>) coordination polymers based on 5-hydroxyisophthalate derivatives and 1,4-bis(2-methylimidazol-1-yl)benzene. CrystEngComm, 2015, 17, 4883-4894.	2.6	15
77	Carbene: Solventâ€Induced Facile Synthesis of Cubicâ€, Sphericalâ€, and Honeycombâ€Shape Palladium <i>N</i> â€Heterocyclic Carbene Particles and Catalytic Applications in Cyanosilylation (Small 30/2015). Small, 2015, 11, 3641-3641.	10.0	0
78	Tailorable Synthesis of Porous Organic Polymers Decorating Ultrafine Palladium Nanoparticles for Hydrogenation of Olefins. ACS Catalysis, 2015, 5, 948-955.	11.2	99
79	Influence of transition metals (M = Co, Fe and Mn) on ordered mesoporous CuM/CeO ₂ catalysts and applications in selective catalytic reduction of NO _x with H ₂ . RSC Advances, 2015, 5, 63135-63141.	3.6	25
80	Benzimidazoleâ€Containing Porous Organic Polymers as Highly Active Heterogeneous Solidâ€Base Catalysts. ChemCatChem, 2015, 7, 1559-1565.	3.7	29
81	Bauxite-supported Transition Metal Oxides: Promising Low-temperature and SO2-tolerant Catalysts for Selective Catalytic Reduction of NOx. Scientific Reports, 2015, 5, 9766.	3.3	30
82	Copper-catalyzed hydroxylation of aryl halides: efficient synthesis of phenols, alkyl aryl ethers and benzofuran derivatives in neat water. Green Chemistry, 2015, 17, 3910-3915.	9.0	44
83	Solventâ€Induced Facile Synthesis of Cubicâ€, Sphericalâ€, and Honeycombâ€Shape Palladium <i>N</i> â€Heterocyclic Carbene Particles and Catalytic Applications in Cyanosilylation. Small, 2015, 11, 3642-3647.	10.0	12
84	Structural Evolution from Metal–Organic Framework to Hybrids of Nitrogen-Doped Porous Carbon and Carbon Nanotubes for Enhanced Oxygen Reduction Activity. Chemistry of Materials, 2015, 27, 7610-7618.	6.7	217
85	Spatial control of palladium nanoparticles in flexible click-based porous organic polymers for hydrogenation of olefins and nitrobenzene. Nano Research, 2015, 8, 709-721.	10.4	52
86	PtM/Ba/Al ₂ O ₃ Ce _{0.6} Zr _{0.4} O ₂ : Influence of Synergetic Interactions between Transition Metal and Platinum on NO _{<i>x</i>} Storage and Reduction. ChemPlusChem, 2014, 79, 1167-1175.	2.8	5
87	Rareâ€Earthâ€Doped Pt/Ba/Ce _{0.6} Zr _{0.4} O ₂ â€Al ₂ O ₃ for NO _{<i>x</i>} Storage and Reduction: The Effect of Rareâ€Earth Doping on Efficiency and Stability. ChemCatChem. 2014. 6. 237-244.	3.7	15
88	Click-based porous organic framework containing chelating terdentate units and its application in hydrogenation of olefins. Journal of Materials Chemistry A, 2014, 2, 7502-7508.	10.3	30
89	Studies on SO ₂ Tolerance and Regeneration over Perovskite-Type LaCo _{1–<i>x</i>} Pt _{<i>x</i>} O ₃ in NO _{<i>x</i>} Storage and Reduction. Journal of Physical Chemistry C, 2014, 118, 13743-13751.	3.1	29
90	Solvent-mediated crystal-to-crystal transformations from a cationic homometallic metal–organic framework to heterometallic frameworks. CrystEngComm, 2014, 16, 8818-8824.	2.6	20

#	Article	IF	CITATIONS
91	Waterâ€Soluble Ionic Palladium Complexes: Effect of Pendant Ionic Groups on Palladium Nanoparticles and Suzuki–Miyaura Reaction in Neat Water. ChemPlusChem, 2014, 79, 257-265.	2.8	12
92	Facile Fabrication of Ultrafine Palladium Nanoparticles with Size- and Location-Control in Click-Based Porous Organic Polymers. ACS Nano, 2014, 8, 5352-5364.	14.6	147
93	Shape-Controllable Formation of Poly-imidazolium Salts for Stable Palladium N-Heterocyclic Carbene Polymers. Scientific Reports, 2014, 4, 5478.	3.3	52
94	Efficient Copperâ€Catalyzed Ullmann Reaction of Aryl Bromides with Imidazoles in Water Promoted by a pHâ€Responsive Ligand. ChemCatChem, 2013, 5, 2978-2982.	3.7	16
95	Synthesis and Crystal Structures of Coordination Complexes Containing Cu ₂ I ₂ Units and Their Application in Luminescence and Catalysis. ChemPlusChem, 2013, 78, 1491-1502.	2.8	26
96	Waterâ€Soluble Palladium Click Chelating Complex: An Efficient and Reusable Precatalyst for Suzuki–Miyaura and Hiyama Reactions in Water. ChemPlusChem, 2013, 78, 536-545.	2.8	24
97	pH-Responsive chelating N-heterocyclic dicarbene palladium(ii) complexes: recoverable precatalysts for Suzuki–Miyaura reaction in pure water. Green Chemistry, 2011, 13, 2071.	9.0	90
98	A palladium chelating complex of ionic water-soluble nitrogen-containing ligand: the efficient precatalyst for Suzuki–Miyaura reaction in water. Green Chemistry, 2011, 13, 2100.	9.0	106
99	Use of Acylhydrazine―and Acylhydrazoneâ€Type Ligands to Promote Culâ€Catalyzed C–N Crossâ€Coupling Reactions of Aryl Bromides with Nâ€Heterocycles. European Journal of Organic Chemistry, 2011, 2011, 2692-2696.	2.4	40
100	Nitroguanidineâ€Fused Bicyclic Guanidinium Salts: A Family of Highâ€Density Energetic Materials. Chemistry - A European Journal, 2010, 16, 8522-8529.	3.3	48
101	Bis[3-(5-nitroimino-1,2,4-triazolate)]-Based Energetic Salts: Synthesis and Promising Properties of a New Family of High-Density Insensitive Materials. Journal of the American Chemical Society, 2010, 132, 11904-11905.	13.7	273
102	Furazanâ€Functionalized Tetrazolateâ€Based Salts: A New Family of Insensitive Energetic Materials. Chemistry - A European Journal, 2009, 15, 2625-2634.	3.3	127
103	Nitrogen-rich nitroguanidyl-functionalized tetrazolate energetic salts. Chemical Communications, 2009, , 2697.	4.1	48
104	Syntheses, Structures, and Characterization of Two Manganese(II)-Aminobenzoic Complexes. European Journal of Inorganic Chemistry, 2006, 2006, 1649-1656.	2.0	38
105	Metal-Directed Stereoselective Syntheses of Homochiral Complexes ofexo-Bidentate Binaphthol Derivatives. European Journal of Inorganic Chemistry, 2005, 2005, 751-758.	2.0	20
106	Metal-Directed Self-Assembly: Two New Metal-Binicotinate Grid Polymeric Networks and Their Fluorescence Emission Tuned by Ligand Configuration. European Journal of Inorganic Chemistry, 2004, 2004, 2695-2700.	2.0	45
107	New Types of Homochiral Helical Coordination Polymers Constructed byexo-Bidentate Binaphthol Derivatives. European Journal of Inorganic Chemistry, 2004, 2004, 1595-1599.	2.0	46
108	Syntheses and Characterizations of Metal-Organic Frameworks with Unusual Topologies Derived from Flexible Dipyridyl Ligands. European Journal of Inorganic Chemistry, 2004, 2004, 3751.	2.0	27

#	Article	IF	CITATIONS
109	A Three-Dimensional Manganese(II) Complex Exhibiting Ferrimagnetic and Metamagnetic Behaviors. Inorganic Chemistry, 2003, 42, 5486-5488.	4.0	88
110	Self-Assembly of Five Cadmium(II) Coordination Polymers from 4,4′-Diaminodiphenylmethane. European Journal of Inorganic Chemistry, 2003, 2003, 1778-1784.	2.0	40
111	Synthesis, Crystal Structure and Fluorescence of Two Novel Mixed-Ligand Cadmium Coordination Polymers with Different Structural Motifs. European Journal of Inorganic Chemistry, 2003, 2003, 2705-2710.	2.0	128
112	Self-Assembly of Three CdII- and CuII-Containing Coordination Polymers from 4,4′-Dipyridyl Disulfide. European Journal of Inorganic Chemistry, 2003, 2003, 3623-3632.	2.0	67
113	A new type of three-dimensional framework constructed from dodecanuclear cadmium(ii) macrocyclesElectronic supplementary information (ESI) available: Synthesis of 1 Figures S1–S4. See http://www.rsc.org/suppdata/cc/b2/b212425d/This work was supported by the National Nature Science Foundation of China, Nature Science Foundation of Fujian Province and the Key Project of Chinese	4.1	174
114	Academy of Science Chemical Communications, 2003, 1018-1019. Syntheses and Crystal Structures of Five Cadmium(II) Complexes Derived from 4-Aminobenzoic Acid. European Journal of Inorganic Chemistry, 2002, 2002, 2904-2912.	2.0	47
115	STRATEGIES FOR THE CONSTRUCTION OF COMPLEXES BASED ON METAL CLUSTERS. , 2002, , .		0