Krishna Chaitanya Vishnubhatla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5367760/publications.pdf

Version: 2024-02-01

25 papers

822 citations

567281 15 h-index 24 g-index

25 all docs 25 docs citations

25 times ranked

1178 citing authors

#	Article	IF	Citations
1	Facile fabrication of integrated microfluidic SERS substrate by femtosecond laser sintering of silver nano particles. Optical Materials, 2021, 111, 110518.	3.6	12
2	SERS of Dopamine: Computational and experimental studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 260, 119962.	3.9	10
3	HF-free and fast fabrication of long, rectangular microchannels in fused silica: Novel femtosecond laser irradiation geometry. Optical Materials, 2021, 122, 111682.	3.6	3
4	Highly integrated lab-on-a-chip for fluorescence detection. Optical Engineering, 2016, 55, 097102.	1.0	8
5	Fresnel lenses fabricated by femtosecond laser micromachining on polymer one-dimensional photonic crystal. Optical Engineering, 2014, 53, 071813.	1.0	2
6	Waveguide arrays for light harvesting in microfluidic chips. Optical Engineering, 2014, 53, 071811.	1.0	3
7	Femtosecond laser micromachining for optofluidic and energy applications. Optical Materials, 2013, 36, 102-105.	3.6	6
8	High-resolution direct-writing of metallic electrodes on flexible substrates for high performance organic field effect transistors. Organic Electronics, 2013, 14, 2249-2256.	2.6	41
9	Scaling of black silicon processing time by high repetition rate femtosecond lasers. Optical Materials Express, 2013, 3, 612.	3.0	18
10	Femtosecond Laser Micro-machining for Energy Applications. , 2013, , .		0
11	Effect of configuration of the microchannels fabricated by femtosecond laser micromachining on topological defects in confined liquid crystals. Proceedings of SPIE, 2012, , .	0.8	1
12	Topological defects of nematic liquid crystals confined in porous networks. Soft Matter, 2011, 7, 10945.	2.7	33
13	Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser. Journal of Biophotonics, 2010, 3, 234-243.	2.3	62
14	Organic random laser in an optofluidic chip fabricated by femtosecond laser. Proceedings of SPIE, 2010, , .	0.8	2
15	Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells. Optics Express, 2010, 18, 4679.	3.4	148
16	Ultrafast optical gain switch in organic photonic devices. Journal of Materials Chemistry, 2010, 20, 519-523.	6.7	24
17	Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels. Applied Physics Letters, 2009, 94, 041123.	3.3	28
18	Optical studies of two dimensional gratings in fused silica, GE 124, and Foturanâ,,¢ glasses fabricated using femtosecond laser pulses. Optics Communications, 2009, 282, 4537-4542.	2.1	16

2

Krishna Chaitanya

#	Article	IF	CITATION
19	Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching. Optics Express, 2009, 17, 8685.	3.4	98
20	Femtosecond laser fabrication of microfluidic channels for organic photonic devices. Applied Optics, 2009, 48, G114.	2.1	20
21	Femtosecond laser direct writing of gratings and waveguides in high quantum efficiency erbium-doped Baccarat glass. Journal Physics D: Applied Physics, 2009, 42, 205106.	2.8	24
22	Silver to erbium energy transfer in phosphate glasses. Journal of Non-Crystalline Solids, 2007, 353, 498-501.	3.1	29
23	In situ FTIR study on the dehydration of natural goethite. Journal of Asian Earth Sciences, 2006, 27, 503-511.	2.3	128
24	Erbium-activated modified silica glasses with high 4I13/2 luminescence quantum yield. Optical Materials, 2006, 28, 1325-1328.	3.6	19
25	Direct formation of the Â-CaSO4 phase in dehydration process of gypsum: In situ FTIR study. American Mineralogist, 2005, 90, 672-678.	1.9	87