Emiliano Fabiani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5367745/publications.pdf Version: 2024-02-01

ΕΜΙΙΙΑΝΟ ΕΛΒΙΑΝΙ

#	Article	IF	CITATIONS
1	Valproic Acid at Therapeutic Plasma Levels May Increase 5-Azacytidine Efficacy in Higher Risk Myelodysplastic Syndromes. Clinical Cancer Research, 2009, 15, 5002-5007.	3.2	103
2	Characteristics and outcome of therapyâ€related myeloid neoplasms: Report from the <scp>I</scp> talian network on secondary leukemias. American Journal of Hematology, 2015, 90, E80-5.	2.0	93
3	Reduced BRCA1 expression due to promoter hypermethylation in therapy-related acute myeloid leukaemia. British Journal of Cancer, 2006, 95, 1108-1113.	2.9	69
4	Increased risk of acute myeloid leukaemia due to polymorphisms in detoxification and DNA repair enzymes. Annals of Oncology, 2007, 18, 1523-1528.	0.6	61
5	Why methylation is not a marker predictive of response to hypomethylating agents. Haematologica, 2014, 99, 613-619.	1.7	61
6	Analysis of genome-wide methylation and gene expression induced by 5-aza-2′-deoxycytidine identifies BCL2L10 as a frequent methylation target in acute myeloid leukemia. Leukemia and Lymphoma, 2010, 51, 2275-2284.	0.6	43
7	Impairment of PI3K/AKT and WNT/β-catenin pathways in bone marrow mesenchymal stem cells isolated from patients with myelodysplastic syndromes. Experimental Hematology, 2016, 44, 75-83.e4.	0.2	42
8	Role of BCL2L10 methylation and TET2 mutations in higher risk myelodysplastic syndromes treated with 5-Azacytidine. Leukemia, 2011, 25, 1910-1913.	3.3	40
9	Prognostic role of glutathione S-transferase polymorphisms in acute myeloid leukemia. Leukemia, 2008, 22, 1685-1691.	3.3	36
10	Epigenetic changes in therapy-related MDS/AML. Chemico-Biological Interactions, 2010, 184, 46-49.	1.7	36
11	Somatic mutations as markers of outcome after azacitidine and allogeneic stem cell transplantation in higher-risk myelodysplastic syndromes. Leukemia, 2019, 33, 785-790.	3.3	33
12	Fanconi anemia gene variants in therapy-related myeloid neoplasms. Blood Cancer Journal, 2015, 5, e323-e323.	2.8	32
13	Promoter methylation of DAPK1, E-cadherin and thrombospondin-1 in de novo and therapy-related myeloid neoplasms. Blood Cells, Molecules, and Diseases, 2010, 45, 181-185.	0.6	28
14	Time- and residue-specific differences in histone acetylation induced by VPA and SAHA in AML1/ETO-positive leukemia cells. Epigenetics, 2013, 8, 210-219.	1.3	24
15	Endothelial Progenitor Cell Dysfunction in Myelodysplastic Syndromes: Possible Contribution of a Defective Vascular Niche to Myelodysplasia. Neoplasia, 2015, 17, 401-409.	2.3	24
16	Polymorphisms of detoxification and DNA repair enzymes in myelodyplastic syndromes. Leukemia Research, 2009, 33, 1068-1071.	0.4	23
17	What's new in the pathogenesis and treatment of therapy-related myeloid neoplasms. Blood, 2021, 138, 749-757.	0.6	23
18	Mutations of epigenetic regulators and of the spliceosome machinery in therapy-related myeloid neoplasms and in acute leukemias evolved from chronic myeloproliferative diseases. Leukemia, 2013, 27, 982-985.	3.3	22

Emiliano Fabiani

#	Article	IF	CITATIONS
19	The <i>BCL2L10</i> Leu21Arg variant and risk of therapy-related myeloid neoplasms and <i>de novo</i> myelodysplastic syndromes. Leukemia and Lymphoma, 2014, 55, 1538-1543.	0.6	22
20	The Role of Forkhead Box Proteins in Acute Myeloid Leukemia. Cancers, 2019, 11, 865.	1.7	22
21	Clonal evolution in therapy-related neoplasms. Oncotarget, 2017, 8, 12031-12040.	0.8	22
22	Myeloid lncRNA <i>LOUP</i> mediates opposing regulatory effects of RUNX1 and RUNX1-ETO in t(8;21) AML. Blood, 2021, 138, 1331-1344.	0.6	19
23	PU.1 and CEBPA expression in acute myeloid leukemia. Leukemia Research, 2008, 32, 1448-1453.	0.4	16
24	SETBP1 mutations in 106 patients with therapy-related myeloid neoplasms. Haematologica, 2014, 99, e152-e153.	1.7	16
25	Atypical Rearrangements in APL-Like Acute Myeloid Leukemias: Molecular Characterization and Prognosis. Frontiers in Oncology, 2022, 12, 871590.	1.3	16
26	Cytotoxicity and Differentiating Effect of the Poly(ADP-Ribose) Polymerase Inhibitor Olaparib in Myelodysplastic Syndromes. Cancers, 2019, 11, 1373.	1.7	13
27	Therapy-related myeloid neoplasms: clinical perspectives. OncoTargets and Therapy, 2018, Volume 11, 5909-5915.	1.0	12
28	Gene expression profiling of myelodysplastic CD34+ hematopoietic stem cells treated in vitro with decitabine. Leukemia Research, 2011, 35, 465-471.	0.4	11
29	Myelodysplastic disorders carrying both isolated del(5q) and JAK2V617F mutation: concise review, with focus on lenalidomide therapy. OncoTargets and Therapy, 2014, 7, 1043.	1.0	9
30	Characterization of FLT3-ITDmut acute myeloid leukemia: molecular profiling of leukemic precursor cells. Blood Cancer Journal, 2020, 10, 85.	2.8	9
31	Mutational profile of ZBTB16â€RARAâ€positive acute myeloid leukemia. Cancer Medicine, 2021, 10, 3839-3847.	1.3	9
32	SIMILARITIES OF ELDERLY AND THERAPY-RELATED AML. Mediterranean Journal of Hematology and Infectious Diseases, 2011, 3, e2011052.	0.5	8
33	Longitudinal detection of <i>DNMT3A</i> ^{R882H} transcripts in patients with acute myeloid leukemia. American Journal of Hematology, 2018, 93, E120-E123.	2.0	7
34	Clonal haematopoiesis as a risk factor for therapyâ€related myeloid neoplasms in patients with chronic lymphocytic leukaemia treated with chemoâ€(immuno)therapy. British Journal of Haematology, 2022, 198, 103-113.	1.2	7
35	5-Azacytidine in chronic myelomonocytic leukemia: case report and review of literature. Mediterranean Journal of Hematology and Infectious Diseases, 2011, 3, e2011011.	0.5	5
36	Transcription factors implicated in late megakaryopoiesis as markers of outcome after azacitidine and allogeneic stem cell transplantation in myelodysplastic syndrome. Leukemia Research, 2019, 84, 106191.	0.4	5

Emiliano Fabiani

#	Article	IF	CITATIONS
37	From Clonal Hematopoiesis to Therapy-Related Myeloid Neoplasms: The Silent Way of Cancer Progression. Biology, 2021, 10, 128.	1.3	5
38	Methylenetetrahydrofolate reductase polymorphisms in myelodysplastic syndromes and therapy-related myeloid neoplasms. Leukemia and Lymphoma, 2014, 55, 2942-2944.	0.6	4
39	Mutational analysis of bone marrow mesenchymal stromal cells in myeloid malignancies. Experimental Hematology, 2014, 42, 731-733.	0.2	4
40	Identification of i(X)(p10) as the sole molecular abnormality in atypical chronic myeloid leukemia evolved into acute myeloid leukemia. Molecular and Clinical Oncology, 2017, 8, 463-465.	0.4	4
41	The forkhead box C1 (FOXC1) transcription factor is downregulated in acute promyelocytic leukemia. Oncotarget, 2017, 8, 84074-84085.	0.8	4
42	Mutational profile and haematological response to iron chelation in myelodysplastic syndromes (<scp>MDS</scp>). British Journal of Haematology, 2019, 185, 954-957.	1.2	4
43	A case of SRSF2 mutation in chronic lymphocytic leukemia. Leukemia Research Reports, 2016, 6, 11-14.	0.2	2
44	MTHFR, TS and XRCC1 genetic variants may affect survival in patients with myelodysplastic syndromes treated with supportive care or azacitidine. Pharmacogenomics Journal, 2018, 18, 444-449.	0.9	2
45	Genetic analysis of erythrocytosis reveals possible causative and modifier gene mutations. British Journal of Haematology, 2019, 186, e100-e103.	1.2	2
46	In vitro effect of eltrombopag alone and in combination with azacitidine on megakaryopoiesis in patients with myelodysplastic syndrome. Platelets, 2021, 32, 378-382.	1.1	2
47	Development of a High-Resolution Melting Curve Analysis Screening Test for SRSF2 Splicing Factor Gene Mutations in Myelodysplastic Syndromes. Journal of Molecular Diagnostics, 2015, 17, 85-89.	1.2	1
48	Could haemochromatosis (<i><scp>HFE</scp></i>) gene mutations affect response to iron chelation in myelodysplastic syndrome? – Response to Lucijanic and Kusec. British Journal of Haematology, 2019, 186, 639-640.	1.2	1
49	WT1 evaluation in higher-risk myelodysplastic syndrome patients treated with azacitidine. Leukemia and Lymphoma, 2020, 61, 979-982.	0.6	1
50	Clonal Hematopoiesis Is Associated with Increased Risk for Therapy-Related Myeloid Neoplasms in Chronic Lymphocytic Leukemia Patients Treated with Chemo(immuno)Therapy. Blood, 2020, 136, 19-20.	0.6	1
51	P138 Valproic acid at therapeutic plasma levels may increase 5-azacitidine efficacy in higher risk myelodysplastic syndromes. Leukemia Research, 2009, 33, S139-S140.	0.4	Ο
52	Myelodysplastic Stem Cells: Gene Expression Profiling. Stem Cells and Cancer Stem Cells, 2012, , 55-67.	0.1	0
53	Prognostic Impact of TS, MTHFR and XRCC1 Genetic Variants in 113 Patients with Myelodysplastic Syndromes. Blood, 2015, 126, 1675-1675.	0.6	0
54	Unravelling Genetic Mechanisms of Erythrocytosis: A Real-Life Experience from a Single Center. Blood, 2018, 132, 3617-3617.	0.6	0

4