
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5367736/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physical genetics: Cross-breeding density functional theory and X-ray photoelectron spectroscopy to rationalize chemical shifts of binding energies in solid compounds. Solid State Sciences, 2020, 110, 106359.	3.2	4
2	Relationship between the Auger parameter and the ground state valence charge at the coreâ€ionized site. Surface and Interface Analysis, 2020, 52, 864-868.	1.8	6
3	Relationship between the Auger parameter and the ground state valence charge of the coreâ€ionized atom: The case of Cu(I) and Cu (II) compounds. Surface and Interface Analysis, 2019, 51, 1359-1370.	1.8	9
4	Comment on: "Structural, morphological and optical properties of shuttle-like CeO2 synthesized by a facile hydrothermal method,―by Li etÂal., J. Alloys Comp., 722 (2017) 489. Journal of Alloys and Compounds, 2019, 770, 942-944.	5.5	3
5	Auger parameter and Wagner plot studies of small copper clusters. Surface Science, 2016, 646, 298-305.	1.9	23
6	A comparison of the photocatalytic activity between commercial and synthesized mesoporous and nanocrystalline titanium dioxide for 4-nitrophenol degradation: Effect of phase composition, particle size, and addition of carbon nanotubes. Applied Surface Science, 2015, 359, 293-305.	6.1	15
7	The "extent of reaction†a powerful concept to study chemical transformations at the first-year general chemistry courses. Foundations of Chemistry, 2015, 17, 107-115.	1.1	4
8	N2O decomposition over [Fe]-MFI catalysts: Influence of the Fe O nuclearity and the presence of framework aluminum on the catalytic activity. Journal of Catalysis, 2014, 318, 1-13.	6.2	40
9	The Wagner plot and the Auger parameter as tools to separate initial- and final-state contributions in X-ray photoemission spectroscopy. Surface Science, 2013, 618, 3-11.	1.9	50
10	Unusual Complete Reduction of Cu ²⁺ Species in Cu-ZSM-5 Zeolites under Vacuum Treatment at High Temperature. Chemistry of Materials, 2012, 24, 2022-2031.	6.7	29
11	Basis set effects on Cu(l) coordination in Cu-ZSM-5: a computational study. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	5
12	A computational study on the mechanism of NO decomposition catalyzed by Cu-ZSM-5: A comparison between single and dimeric Cu+ active sites. Journal of Molecular Catalysis A, 2012, 358, 134-144.	4.8	22
13	A Mössbauer and structural investigation of Fe-ZSM-5 catalysts: Influence of Fe oxide nanoparticles size on the catalytic behaviour for the NO-SCR by C3H8. Applied Catalysis B: Environmental, 2011, 102, 215-223.	20.2	50
14	Tetrakis-2,3-[5,6-di-(2-pyridyl)-pyrazino]porphyrazine, and its Cu(II) complex as sensitizers in the TiO2-based photo-degradation of 4-nitrophenol. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 220, 77-83.	3.9	19
15	Auger parameters and Wagner plots. Journal of Electron Spectroscopy and Related Phenomena, 2010, 178-179, 123-127.	1.7	23
16	CuO nanoparticles entrapped in MFI framework: Investigation of textural, magnetic and catalytic properties of Cu-ZSM-5 and Cu-S-1 catalysts. Applied Catalysis B: Environmental, 2009, 91, 499-506.	20.2	15
17	Long range and surface effects on the Auger parameter: electrostatic selfâ€consistent polarization energy model. Surface and Interface Analysis, 2008, 40, 692-694.	1.8	3
18	XPS characterization of a synthetic Tiâ€containing MFI zeolite framework: the titanosilicalites, TSâ€1. Surface and Interface Analysis, 2008, 40, 695-699.	1.8	22

#	Article	IF	CITATIONS
19	Copper exchanged Silicalite-1: evidence of the location of copper oxide nanoclusters in the supermicropores of S-1. Studies in Surface Science and Catalysis, 2008, , 925-928.	1.5	2
20	A computational study on N2adsorption in Cu-ZSM-5. Physical Chemistry Chemical Physics, 2007, 9, 417-424.	2.8	18
21	An XPS study of the reduction process of CuO–ZnO–Al2O3 catalysts obtained from hydroxycarbonate precursors. Surface and Interface Analysis, 2006, 38, 224-228.	1.8	10
22	Auger parameter studies of third-row chemical elements. Surface and Interface Analysis, 2006, 38, 636-639.	1.8	2
23	Dimeric Cu(I) species in Cu-ZSM-5 catalysts: the active sites for the NO decomposition. Journal of Catalysis, 2005, 232, 476-487.	6.2	70
24	An XPS study of microporous and mesoporous titanosilicates. Surface and Interface Analysis, 2004, 36, 1402-1412.	1.8	42
25	Epoxidation on titanium-containing silicates: do structural features really affect the catalytic performance?. Journal of Catalysis, 2003, 214, 242-250.	6.2	105
26	Preparation and characterisation of mesoporous silica–alumina and silica–titania with a narrow pore size distribution. Catalysis Today, 2003, 77, 315-323.	4.4	48
27	Structural properties of Cu-MCM-41 and Cu-Al-MCM-41(Si/Al=30) catalysts. Studies in Surface Science and Catalysis, 2002, 144, 577-584.	1.5	2
28	Butane isomerization on several H-zeolite catalysts. Studies in Surface Science and Catalysis, 2002, , 715-722.	1.5	1
29	Dinitrogen Irreversible Adsorption on Overexchanged Cu-ZSM-5. Journal of Physical Chemistry B, 2002, 106, 13326-13332.	2.6	33
30	XPS detection of some redox phenomena in Cu-zeolites. Surface and Interface Analysis, 2002, 33, 516-521.	1.8	36
31	Use of the absolute Auger parameter for vanadium in the study of the dielectric relaxation of cerium vanadate. Surface and Interface Analysis, 2002, 33, 533-538.	1.8	8
32	lsomerization of n-Butane over Ultrastable H-Y Zeolites with Different Si/Al Atomic Ratio. Catalysis Letters, 2002, 78, 119-123.	2.6	4
33	Laser induced desorption and ablation: mechanism of metal removal from an Al-Cu-Fe alloy and a quasicrystal of the same composition. International Journal of Photoenergy, 2001, 3, 123-129.	2.5	2
34	A comparison between [Ti]-MCM-41 and amorphous mesoporous silica–titania as catalysts for the epoxidation of bulky unsaturated alcohols. Microporous and Mesoporous Materials, 2001, 44-45, 595-602.	4.4	22
35	Use of Auger parameter and Wagner plot in the characterization of Cu-ZSM-5 catalysts. Surface and Interface Analysis, 2001, 31, 249-254.	1.8	18
36	Catalytic epoxidation of unsaturated alcohols on Ti-MCM-41. Catalysis Today, 2000, 60, 219-225.	4.4	69

#	Article	IF	CITATIONS
37	One-pot conversion of citronellal into isopulegol epoxide on mesoporous titanium silicate. Chemical Communications, 2000, , 1789-1790.	4.1	26
38	Cu–ZSM-5 (Si/Al=66), Cu–Fe–S-1 (Si/Fe=66) and Cu–S-1 catalysts for NO decomposition: preparation, analytical characterization and catalytic activity. Microporous and Mesoporous Materials, 1999, 30, 165-175.	4.4	19
39	On the role of carbonaceous material in the reduction of Cu2+ to Cu+ in Cu-ZSM-5 catalysts. Applied Catalysis A: General, 1999, 188, 107-119.	4.3	29
40	Title is missing!. Topics in Catalysis, 1999, 8, 171-178.	2.8	20
41	A comparison between Cu-ZSM-5, Cu–S-1 and Cu–mesoporous-silica–alumina as catalysts for NO decomposition. Applied Catalysis B: Environmental, 1999, 20, 67-73.	20.2	75
42	In situ analytical investigation of redox behavior of Cu-ZSM-5 catalysts. Physical Chemistry Chemical Physics, 1999, 1, 4515-4519.	2.8	20
43	Oxide electronic polarizabilities and aluminum coordination at the outer surface of zeolites obtained by X-ray photoelectron spectroscopy. Applied Surface Science, 1998, 135, 150-162.	6.1	15
44	Auger parameter and Wagner plot in the characterization of chemical states by X-ray photoelectron spectroscopy: a review. Journal of Electron Spectroscopy and Related Phenomena, 1998, 95, 95-144.	1.7	315
45	Preparation, characterization and catalytic activity towards lean NOx reduction of over-exchanged Cu-ZSM-5 catalysts. Studies in Surface Science and Catalysis, 1997, 105, 1525-1532.	1.5	6
46	Irreversible dinitrogen adsorption on Cu-ZSM-5 catalysts and in situ IR identification of the NO decomposition sites. Chemical Communications, 1997, , 1909.	4.1	12
47	Transient behaviour of Cu-overexchanged ZSM-5 catalyst in NO decomposition. Catalysis Letters, 1997, 43, 255-259.	2.6	22
48	Preparation, Characterization, andab initioX-Ray Powder Diffraction Study of Cu2(OH)3(CH3COO)·H2O. Journal of Solid State Chemistry, 1997, 131, 252-262.	2.9	84
49	Nitric oxide decomposition over Cu-exchanged ZSM-5 with high Si/Al ratio. Applied Catalysis B: Environmental, 1996, 8, 197-207.	20.2	43
50	Auger parameter and wagner plot in the characterization of chemical states: initial and final state effects. Journal of Electron Spectroscopy and Related Phenomena, 1995, 76, 365-370.	1.7	36
51	Lean NOx reduction CuZSM5 catalysts: Evaluation of performance at the spark ignition engine exhaust. Catalysis Today, 1995, 26, 33-39.	4.4	35
52	XPS and adsorption of dinitrogen studies on copper-ion-exchanged ZSM-5 and Y zeolites. Studies in Surface Science and Catalysis, 1995, , 69-70.	1.5	3
53	Structural and Electronic Properties of Sodalite: An ab Initio Molecular Dynamics Study. The Journal of Physical Chemistry, 1995, 99, 12883-12891.	2.9	40
54	The contribution of X-ray photoelectron and X-ray excited Auger spectroscopies in the characterization of zeolites and of metal clusters entrapped in zeolites. Zeolites, 1994, 14, 469-475.	0.5	23

MORETTI GIULIANO

#	Article	IF	CITATIONS
55	Turnover frequency for NO decomposition over Cu-ZSM-5 catalysts: insight into the reaction mechanism. Catalysis Letters, 1994, 28, 143-152.	2.6	68
56	Effects of the Si/Al atomic ratio on the activity of Cu-ZSM-5 catalysts for nitric oxide decomposition. Catalysis Letters, 1994, 23, 135-140.	2.6	61
57	The catalytic activity of Cu-ZSM-5 and Cu-Y zeolites in NO decomposition: dependence on copper concentration. Catalysis Letters, 1994, 23, 141-149.	2.6	79
58	Bulk and surface characterization of some heteropolymolybdates and the products of their reduction and sulfidation. Journal of Materials Chemistry, 1994, 4, 1641.	6.7	4
59	Anderson-type ammonium hexamolybdotungstonickelates. Journal of Materials Chemistry, 1994, 4, 541.	6.7	6
60	New advancements in the theory of the Auger parameter: Applications to the characterization of small metallic particles. Surface and Interface Analysis, 1993, 20, 675-681.	1.8	8
61	Number of metallic clusters in Y zeolites obtained from129Xe NMR. Catalysis Letters, 1993, 17, 285-293.	2.6	8
62	The influence of oxygen deficiency and Sb doping on inverse photoemission spectra of SnO2. Surface Science, 1993, 280, 393-397.	1.9	15
63	Application of the Auger parameter in the characterization of small copper particles supported on insulators. Surface Science, 1993, 287-288, 1076-1081.	1.9	18
64	Cuo–ZnO–Al2O3mixed oxides: preparation, bulk and surface characterization. Journal of Materials Chemistry, 1993, 3, 505-511.	6.7	23
65	Preparation and characterisation of cobalt–copper hydroxysalts and their oxide products of decomposition. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 311-319.	1.7	72
66	The use of the oxygen Auger parameters in the characterisation of oxygen-containing compounds. Journal of Electron Spectroscopy and Related Phenomena, 1992, 58, 105-118.	1.7	27
67	Auger parameter of small Pd clusters in a zeolite matrix: experimental investigation and application of a simple electrostatic model. Journal of Electron Spectroscopy and Related Phenomena, 1992, 58, R1-R12.	1.7	17
68	Characterization of zeolite-supported Pt-Cu bimetallic catalyst by xenon-129 NMR and EXAFS. Journal of Catalysis, 1992, 133, 191-201.	6.2	34
69	Kinetics of the reverse water-gas shift reaction over Cu(110). Journal of Catalysis, 1992, 134, 66-74.	6.2	99
70	The titration of oxygen adatoms by H2 from the Cs-promoted Cu(110) surface. Surface Science, 1991, 259, 18-25.	1.9	10
71	Characterization of copper–manganese hydroxysalts and oxysalts. Journal of Materials Chemistry, 1991, 1, 129-135.	6.7	8
72	Copper–cobalt hydroxysalts and oxysalts: bulk and surface characterization. Journal of Materials Chemistry, 1991, 1, 531-537.	6.7	22

#	Article	IF	CITATIONS
73	Characterization of copper-manganese mixed oxides. Catalysis Today, 1991, 9, 211-218.	4.4	13
74	Auger parameter shifts in the case of the non-local screening mechanism: Applications of the electrostatic model to molecules, solids and adsorbed species. Surface and Interface Analysis, 1991, 17, 352-356.	1.8	36
75	XPS Studies of characterized Cu/Al2O3, Zn/Al2O3 and CuZn/Al2O3, catalysts. Surface and Interface Analysis, 1991, 17, 745-750.	1.8	23
76	Bimetallic copper-platinum particles supported in Y zeolite: structural characterization by EXAFS. The Journal of Physical Chemistry, 1991, 95, 5210-5215.	2.9	36
77	Effects of Acidity and Metal Ensemble Size on the Coke Formation in Pt/Nay and Ptcu/Nay by Methylcyclopentane Conversion. Studies in Surface Science and Catalysis, 1991, 68, 727-733.	1.5	2
78	Charge distribution andlocal andnon-local screening effects studied by means of the Auger parameter and chemical state plots. Surface and Interface Analysis, 1990, 15, 47-50.	1.8	39
79	Comment on the paper ?surface composition and chemical bonding of thermally reduced yttria as studied by XPS and SEXAFS: Influence of Zr doping? by thromatet al. (surf. interface anal. 15, 355 (1990)). Surface and Interface Analysis, 1990, 15, 797-798.	1.8	1
80	Characterization of well dispersed copper species on the surface of ZnO by x-ray photoelectron spectroscopy. Applied Surface Science, 1990, 45, 341-349.	6.1	27
81	Relationship between the auger parameter and the energy gap. Journal of Electron Spectroscopy and Related Phenomena, 1990, 50, 289-293.	1.7	18
82	Auger parameter and chemical state plots for copper- and zinc-containing compounds: charge distribution and screening effects. Journal of Physics Condensed Matter, 1989, 1, SB193-SB195.	1.8	8
83	Characterization and catalysis of Pt\$z.sbnd;Cu clusters in NaY. Journal of Catalysis, 1989, 115, 205-216.	6.2	59
84	Geometric causes of the methylcyclopentane ring opening selectivity over Pt/NaY catalysts. Journal of Catalysis, 1989, 116, 350-360.	6.2	41
85	Core-level shifts and the choice of Auger parameter. Surface and Interface Analysis, 1989, 14, 257-266.	1.8	39
86	Structural characterization of malachite-like coprecipitated precursors of the binary CuO-ZnO catalysts: bulk and surface properties. Catalysis Today, 1988, 2, 675-683.	4.4	35
87	Structural characterization of malachite-like coprecipitated precursors of binary CuO\$z.sbnd;ZnO catalysts. Journal of Catalysis, 1988, 109, 367-377.	6.2	104
88	Comparison between the Wagner Auger parameter and Auger parameters proposed by Hohlneicheret al. and Lang and Williams. Surface and Interface Analysis, 1987, 10, 434-434.	1.8	3
89	Ionic character of the magnesium-oxygen bond in oxide solid solutions studied by the auger parameter. Journal of Electron Spectroscopy and Related Phenomena, 1986, 40, 85-89.	1.7	11
90	Surface characterization of CuO-ZnO-Al2O3 methanol-synthesis catalysts by XPS. Surface and Interface Analysis, 1986, 9, 246-246.	1.8	3

#	Article	IF	CITATIONS
91	lonicity of metallic oxide surfaces on metals as observed by Auger (XPS) spectroscopy. Surface and Interface Analysis, 1985, 7, 8-12.	1.8	42
92	On the Auger parameter of Cu(II) compounds. Surface and Interface Analysis, 0, , .	1.8	3