

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5367237/publications.pdf Version: 2024-02-01

		257450	414414
32	4,347	24	32
papers	citations	h-index	g-index
32	32	32	1883
all docs	docs citations	times ranked	citing authors

CHAOLI

1	High fill factor organic solar cells with increased dielectric constant and molecular packing density. Joule, 2022, 6, 444-457.	24.0	117
2	Unconventional Dual Ion Selectivity Determined by the Forward Side of a Bipolar Channel toward Ion Flux. ACS Applied Materials & Interfaces, 2022, 14, 2230-2236.	8.0	12
3	Pushing the Efficiency of High Openâ€Circuit Voltage Binary Organic Solar Cells by Vertical Morphology Tuning. Advanced Science, 2022, 9, e2200578.	11.2	51
4	Correlation between molecular configuration and charge transfer dynamics in highly efficient organic solar cells. Journal of Power Sources, 2022, 532, 231351.	7.8	4
5	Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nature Materials, 2022, 21, 656-663.	27.5	1,214
6	One Porphyrin Per Chain Self-Assembled Helical Ion-Exchange Channels for Ultrahigh Osmotic Energy Conversion. Journal of the American Chemical Society, 2022, 144, 9472-9478.	13.7	41
7	Blueshifting the Absorption of a Smallâ€Molecule Donor and Using it as the Third Component to Achieve Highâ€Efficiency Ternary Organic Solar Cells. Solar Rrl, 2022, 6, .	5.8	8
8	Large-scale, robust mushroom-shaped nanochannel array membrane for ultrahigh osmotic energy conversion. Science Advances, 2021, 7, .	10.3	81
9	Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nature Energy, 2021, 6, 605-613.	39.5	1,307
10	High-efficiency organic solar cells with low voltage loss induced by solvent additive strategy. Matter, 2021, 4, 2542-2552.	10.0	118
11	Alkyl hain Branching of Nonâ€Fullerene Acceptors Flanking Conjugated Side Groups toward Highly Efficient Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2102596.	19.5	125
12	Heteroatom substitution-induced asymmetric A–D–A type non-fullerene acceptor for efficient organic solar cells. Journal of Energy Chemistry, 2020, 40, 144-150.	12.9	45
13	An Optimized Fibril Network Morphology Enables Highâ€Efficiency and Ambientâ€Stable Polymer Solar Cells. Advanced Science, 2020, 7, 2001986.	11.2	34
14	Highâ€Efficiency Organic Solar Cells with Wide Toleration of Active Layer Thickness. Solar Rrl, 2020, 4, 2000476.	5.8	10
15	Ferrocene as a highly volatile solid additive in non-fullerene organic solar cells with enhanced photovoltaic performance. Energy and Environmental Science, 2020, 13, 5117-5125.	30.8	93
16	Effect of Extended π-Conjugation of Central Cores on Photovoltaic Properties of Asymmetric Wide-Bandgap Nonfullerene Acceptors. Organic Materials, 2020, 02, 173-181.	2.0	2
17	Efficient Fusedâ€Ring Extension of A–D–Aâ€Type Nonâ€Fullerene Acceptors by a Symmetric Replicating Core Unit Strategy. Chemistry - A European Journal, 2020, 26, 12411-12417.	3.3	13
18	Asymmetrically Alkyl‧ubstituted Wideâ€Bandgap Nonfullerene Acceptor for Organic Solar Cells. Solar Rrl, 2020, 4, 2000061.	5.8	15

Chao Li

#	Article	IF	CITATIONS
19	Asymmetric A–D–Ĩ€â€"A-type nonfullerene small molecule acceptors for efficient organic solar cells. Journal of Materials Chemistry A, 2019, 7, 19348-19354.	10.3	33
20	Ternary organic solar cells based on two compatible PDI-based acceptors with an enhanced power conversion efficiency. Journal of Materials Chemistry A, 2019, 7, 3552-3557.	10.3	58
21	Asymmetric Nonfullerene Small Molecule Acceptors for Organic Solar Cells. Advanced Energy Materials, 2019, 9, 1900999.	19.5	190
22	Asymmetric fused-ring electron acceptor with two distinct terminal groups for efficient organic solar cells. Journal of Materials Chemistry A, 2019, 7, 8055-8060.	10.3	45
23	Ternary Organic Solar Cells with Efficiency >16.5% Based on Two Compatible Nonfullerene Acceptors. Advanced Materials, 2019, 31, e1905645.	21.0	240
24	Insertion of chlorine atoms onto π-bridges of conjugated polymer enables improved photovoltaic performance. Nano Energy, 2019, 58, 220-226.	16.0	67
25	Asymmetric selenophene-based non-fullerene acceptors for high-performance organic solar cells. Journal of Materials Chemistry A, 2019, 7, 1435-1441.	10.3	52
26	Highâ€Performance Eightâ€Membered Indacenodithiopheneâ€Based Asymmetric Aâ€Dâ€A Type Nonâ€Fullerene Acceptors. Solar Rrl, 2019, 3, 1800246.	5.8	40
27	Efficient Ternary Organic Solar Cells Enabled by the Integration of Nonfullerene and Fullerene Acceptors with a Broad Composition Tolerance. Advanced Functional Materials, 2019, 29, 1807006.	14.9	81
28	A nonfullerene acceptor utilizing a novel asymmetric multifused-ring core unit for highly efficient organic solar cells. Journal of Materials Chemistry C, 2018, 6, 4873-4877.	5.5	73
29	Extension of indacenodithiophene backbone conjugation enables efficient asymmetric A–D–A type non-fullerene acceptors. Journal of Materials Chemistry A, 2018, 6, 18847-18852.	10.3	80
30	Biomimetic Nanofluidic Diode Composed of Dual Amphoteric Channels Maintains Rectification Direction over a Wide pH Range. Angewandte Chemie - International Edition, 2016, 55, 13056-13060.	13.8	50
31	Synthesis, characterization, and field-effect transistor properties of tetrathienoanthracene-based copolymers using a two-dimensional π-conjugation extension strategy: a potential building block for high-mobility polymer semiconductors. Polymer Chemistry, 2015, 6, 5393-5404.	3.9	22
32	Synthesis, Characterization, and Field-Effect Transistors Properties of Novel Copolymers Incorporating Nonplanar Biindeno[2,1- <i>b</i>]thiophenylidene Building Blocks. Macromolecules, 2015, 48, 2444-2453.	4.8	26