List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5367051/publications.pdf Version: 2024-02-01

LIN FENC

#	Article	IF	CITATIONS
1	Bioinspired Surfaces with Special Wettability. Accounts of Chemical Research, 2005, 38, 644-652.	7.6	1,921
2	Petal Effect:  A Superhydrophobic State with High Adhesive Force. Langmuir, 2008, 24, 4114-4119.	1.6	1,682
3	A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water. Angewandte Chemie - International Edition, 2004, 43, 2012-2014.	7.2	1,539
4	A Novel Superhydrophilic and Underwater Superoleophobic Hydrogel oated Mesh for Oil/Water Separation. Advanced Materials, 2011, 23, 4270-4273.	11.1	1,462
5	Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films. Journal of the American Chemical Society, 2004, 126, 62-63.	6.6	1,143
6	Special wettable materials for oil/water separation. Journal of Materials Chemistry A, 2014, 2, 2445-2460.	5.2	1,052
7	Reversible Switching between Superhydrophilicity and Superhydrophobicity. Angewandte Chemie - International Edition, 2004, 43, 357-360.	7.2	1,021
8	Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers. Angewandte Chemie - International Edition, 2002, 41, 1221-1223.	7.2	671
9	Creation of a Superhydrophobic Surface from an Amphiphilic Polymer. Angewandte Chemie - International Edition, 2003, 42, 800-802.	7.2	386
10	Super-Hydrophobic PDMS Surface with Ultra-Low Adhesive Force. Macromolecular Rapid Communications, 2005, 26, 1805-1809.	2.0	336
11	Directly Coating Hydrogel on Filter Paper for Effective Oil–Water Separation in Highly Acidic, Alkaline, and Salty Environment. Advanced Functional Materials, 2015, 25, 5368-5375.	7.8	322
12	Dualâ€Scaled Porous Nitrocellulose Membranes with Underwater Superoleophobicity for Highly Efficient Oil/Water Separation. Advanced Materials, 2014, 26, 1771-1775.	11.1	311
13	Mussel-Inspired Chemistry and Michael Addition Reaction for Efficient Oil/Water Separation. ACS Applied Materials & Interfaces, 2013, 5, 4438-4442.	4.0	310
14	Integrated oil separation and water purification by a double-layer TiO2-based mesh. Energy and Environmental Science, 2013, 6, 1147.	15.6	308
15	CO ₂ â€Responsive Nanofibrous Membranes with Switchable Oil/Water Wettability. Angewandte Chemie - International Edition, 2015, 54, 8934-8938.	7.2	276
16	Thermo and pH Dual-Responsive Materials for Controllable Oil/Water Separation. ACS Applied Materials & Interfaces, 2014, 6, 2026-2030.	4.0	257
17	A Solvothermal Route Decorated on Different Substrates: Controllable Separation of an Oil/Water Mixture to a Stabilized Nanoscale Emulsion. Advanced Materials, 2015, 27, 7349-7355.	11.1	218
18	Thermoâ€Driven Controllable Emulsion Separation by a Polymerâ€Decorated Membrane with Switchable Wettability. Angewandte Chemie - International Edition, 2018, 57, 5740-5745.	7.2	180

#	Article	IF	CITATIONS
19	Superwetting Porous Materials for Wastewater Treatment: from Immiscible Oil/Water Mixture to Emulsion Separation. Advanced Materials Interfaces, 2017, 4, 1600029.	1.9	175
20	Smart responsive surfaces switching reversibly between super-hydrophobicity and super-hydrophilicity. Soft Matter, 2009, 5, 275-281.	1.2	166
21	Cellular responses of aniline oligomers: a preliminary study. Toxicology Research, 2012, 1, 201.	0.9	166
22	A general approach for fabrication of superhydrophobic and superamphiphobic surfaces. Applied Physics Letters, 2008, 92, .	1.5	149
23	Interfacial materials with special wettability. MRS Bulletin, 2013, 38, 366-371.	1.7	137
24	Antioil Ag ₃ PO ₄ Nanoparticle/Polydopamine/Al ₂ O ₃ Sandwich Structure for Complex Wastewater Treatment: Dynamic Catalysis under Natural Light. ACS Sustainable Chemistry and Engineering, 2018, 6, 8019-8028.	3.2	134
25	A Facile Solvent-Manipulated Mesh for Reversible Oil/Water Separation. ACS Applied Materials & Interfaces, 2014, 6, 12821-12826.	4.0	131
26	Superoleophilic and superhydrophobic biodegradable material with porous structures for oil absorption and oil–water separation. RSC Advances, 2013, 3, 23432.	1.7	130
27	One-Step Coating toward Multifunctional Applications: Oil/Water Mixtures and Emulsions Separation and Contaminants Adsorption. ACS Applied Materials & amp; Interfaces, 2016, 8, 3333-3339.	4.0	117
28	PolyPEGylated nanodiamond for intracellular delivery of a chemotherapeutic drug. Polymer Chemistry, 2012, 3, 2716.	1.9	105
29	Surfactant-Mediated Conformal Overgrowth of Core-Shell Metal-Organic Framework Materials with Mismatched Topologies. Small, 2015, 11, 5551-5555.	5.2	104
30	In situ ultrafast separation and purification of oil/water emulsions by superwetting TiO ₂ nanocluster-based mesh. Nanoscale, 2016, 8, 8525-8529.	2.8	103
31	Superhydrophobicity of Nanostructured Carbon Films in a Wide Range of pH Values. Angewandte Chemie - International Edition, 2003, 42, 4217-4220.	7.2	102
32	Ultralight free-standing reduced graphene oxide membranes for oil-in-water emulsion separation. Journal of Materials Chemistry A, 2015, 3, 20113-20117.	5.2	101
33	PANI nanowire film with underwater superoleophobicity and potential-modulated tunable adhesion for no loss oil droplet transport. Soft Matter, 2012, 8, 9064.	1.2	94
34	Straightforward Oxidation of a Copper Substrate Produces an Underwater Superoleophobic Mesh for Oil/Water Separation. ChemPhysChem, 2013, 14, 3489-3494.	1.0	91
35	Creation of a Superhydrophobic Surface from an Amphiphilic Polymer. Angewandte Chemie, 2003, 115, 824-826.	1.6	89
36	Chemical Dual-Responsive Wettability of Superhydrophobic PANI-PAN Coaxial Nanofibers. Macromolecular Rapid Communications, 2007, 28, 1135-1141.	2.0	85

#	Article	IF	CITATIONS
37	Janus membrane decorated <i>via</i> a versatile immersion-spray route: controllable stabilized oil/water emulsion separation satisfying industrial emission and purification criteria. Journal of Materials Chemistry A, 2019, 7, 4941-4949.	5.2	82
38	Mussel-inspired chemistry and Stöber method for highly stabilized water-in-oil emulsions separation. Journal of Materials Chemistry A, 2014, 2, 20439-20443.	5.2	78
39	Nanocomposite Deposited Membrane for Oil-in-Water Emulsion Separation with in Situ Removal of Anionic Dyes and Surfactants. Langmuir, 2017, 33, 7380-7388.	1.6	76
40	Breathing Demulsification: A Three-Dimensional (3D) Free-Standing Superhydrophilic Sponge. ACS Applied Materials & Interfaces, 2015, 7, 22264-22271.	4.0	73
41	A Pure Inorganic ZnO-Co3O4 Overlapped Membrane for Efficient Oil/Water Emulsions Separation. Scientific Reports, 2015, 5, 9688.	1.6	72
42	The Structural Color of Red Rose Petals and Their Duplicates. Langmuir, 2010, 26, 14885-14888.	1.6	71
43	Wettability Alteration of Polymer Surfaces Produced by Scraping. Journal of Adhesion Science and Technology, 2008, 22, 395-402.	1.4	69
44	The effect of surface microstructures and surface compositions on the wettabilities of flower petals. Soft Matter, 2011, 7, 2977.	1.2	67
45	Fast formation of superhydrophobic octadecylphosphonic acid (ODPA) coating for self-cleaning and oil/water separation. Soft Matter, 2014, 10, 8116-8121.	1.2	67
46	Lotus- and Mussel-Inspired PDA–PET/PTFE Janus Membrane: Toward Integrated Separation of Light and Heavy Oils from Water. ACS Applied Materials & Interfaces, 2019, 11, 20545-20556.	4.0	62
47	Asymmetric superwetting configuration of Janus membranes based on thiol–ene clickable silane nanospheres enabling on-demand and energy-efficient oil–water remediation. Journal of Materials Chemistry A, 2019, 7, 10047-10057.	5.2	61
48	One-Step Breaking and Separating Emulsion by Tungsten Oxide Coated Mesh. ACS Applied Materials & Interfaces, 2015, 7, 8108-8113.	4.0	57
49	Fabrication of robust mesh with anchored Ag nanoparticles for oil removal and in situ catalytic reduction of aromatic dyes. Journal of Materials Chemistry A, 2017, 5, 15822-15827.	5.2	55
50	Biocompatibility evaluation of aniline oligomers with different end-functional groups. Toxicology Research, 2013, 2, 427.	0.9	52
51	Electricity-induced switchable wettability and controllable water permeation based on 3D copper foam. Chemical Communications, 2015, 51, 16237-16240.	2.2	50
52	Fast photoâ€switched wettability and color of surfaces coated with polymer brushes containing spiropyran. Journal of Applied Polymer Science, 2012, 125, 870-875.	1.3	47
53	Superwetting copper meshes based on self-organized robust CuO nanorods: efficient water purification for <i>in situ</i> oil removal and visible light photodegradation. Nanoscale, 2018, 10, 4561-4569.	2.8	47
54	In situ dual-functional water purification with simultaneous oil removal and visible light catalysis. Nanoscale, 2016, 8, 18558-18564.	2.8	46

#	Article	IF	CITATIONS
55	A fast and convenient cellulose hydrogel-coated colander for high-efficiency oil–water separation. RSC Advances, 2014, 4, 32544-32548.	1.7	44
56	Fabrication of a silica gel coated quartz fiber mesh for oil–water separation under strong acidic and concentrated salt conditions. RSC Advances, 2014, 4, 11447.	1.7	42
57	A versatile CeO2/Co3O4 coated mesh for food wastewater treatment: Simultaneous oil removal and UV catalysis of food additives. Water Research, 2018, 137, 144-152.	5.3	41
58	Aminoazobenzene@Ag modified meshes with large extent photo-response: towards reversible oil/water removal from oil/water mixtures. Chemical Science, 2019, 10, 4089-4096.	3.7	41
59	A bifunctional β-MnO2 mesh for expeditious and ambient degradation of dyes in activation of peroxymonosulfate (PMS) and simultaneous oil removal from water. Journal of Colloid and Interface Science, 2020, 579, 412-424.	5.0	41
60	A dual functional Janus membrane combining superwettability with electrostatic force for controllable anionic/cationic emulsion separation and <i>in situ</i> surfactant removal. Journal of Materials Chemistry A, 2019, 7, 27156-27163.	5.2	38
61	Smart Nylon Membranes with pHâ€Responsive Wettability: Highâ€Efficiency Separation on Demand for Various Oil/Water Mixtures and Surfactantâ€Stabilized Emulsions. Advanced Materials Interfaces, 2018, 5, 1801179.	1.9	37
62	A novel solution-controlled hydrogel coated mesh for oil/water separation based on monolayer electrostatic self-assembly. RSC Advances, 2014, 4, 51404-51410.	1.7	36
63	Elaborate architecture of the hierarchical hen's eggshell. Nano Research, 2011, 4, 171-179.	5.8	34
64	Facile fabrication of hydrogel coated membrane for controllable and selective oil-in-water emulsion separation. Soft Matter, 2018, 14, 2649-2654.	1.2	32
65	Crown ether modified membranes for Na ⁺ -responsive controllable emulsion separation suitable for hypersaline environments. Journal of Materials Chemistry A, 2020, 8, 2684-2690.	5.2	32
66	Universal and tunable liquid–liquid separation by nanoparticle-embedded gating membranes based on a self-defined interfacial parameter. Nature Communications, 2021, 12, 80.	5.8	32
67	Photothermally induced <i>in situ</i> double emulsion separation by a carbon nanotube/poly(<i>N</i> -isopropylacrylamide) modified membrane with superwetting properties. Journal of Materials Chemistry A, 2020, 8, 7677-7686.	5.2	29
68	Polyacrylamide-Polydivinylbenzene Decorated Membrane for Sundry Ionic Stabilized Emulsions Separation via a Facile Solvothermal Method. ACS Applied Materials & Interfaces, 2016, 8, 21816-21823.	4.0	28
69	Fabrication of Silica Nanospheres Coated Membranes: towards the Effective Separation of Oil-in-Water Emulsion in Extremely Acidic and Concentrated Salty Environments. Scientific Reports, 2016, 6, 32540.	1.6	28
70	A smart nano-V ₂ O ₅ /ODA-coated mesh for a co-responsive photo-induced wettability transition and ROS generation for <i>in situ</i> water purification. Journal of Materials Chemistry A, 2018, 6, 18003-18009.	5.2	27
71	Hierarchical architectures of Ag clusters deposited biomimetic membrane: Synthesis, emulsion separation, catalytic and antibacterial performance. Separation and Purification Technology, 2020, 241, 116733.	3.9	25
72	Oneâ€step fabrication of fluoropolymer transparent films with superhydrophobicity by dry method. Journal of Applied Polymer Science, 2011, 120, 524-529.	1.3	24

#	Article	IF	CITATIONS
73	A Facile Approach for Fabricating Dualâ€Function Membrane: Simultaneously Removing Oil from Water and Adsorbing Waterâ€Soluble Proteins. Advanced Materials Interfaces, 2016, 3, 1600291.	1.9	24
74	Recycling of PE glove waste as highly valuable products for efficient separation of oil-based contaminants from water. Journal of Materials Chemistry A, 2016, 4, 18128-18133.	5.2	24
75	Peanut Leaf-Inspired Hybrid Metal–Organic Framework with Humidity-Responsive Wettability: toward Controllable Separation of Diverse Emulsions. ACS Applied Materials & Interfaces, 2020, 12, 6309-6318.	4.0	23
76	Superwetting Patterned Membranes with an Anisotropy/Isotropy Transition: Towards Signal Expression and Liquid Permeation. Angewandte Chemie - International Edition, 2020, 59, 13437-13443.	7.2	20
77	Polymer-Decorated Filter Material for Wastewater Treatment: In Situ Ultrafast Oil/Water Emulsion Separation and Azo Dye Adsorption. Langmuir, 2018, 34, 13192-13202.	1.6	19
78	A MoS ₂ nanosheet-coated mesh for pH-induced multi-pollutant water remediation with <i>in situ</i> electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 6435-6441.	5.2	18
79	Morphologyâ€induced TiO ₂ Bandgap Change for Super Rapid Treatment of Dye Wastewater under Visible Light. Advanced Materials Technologies, 2017, 2, 1700125.	3.0	13
80	Thermoâ€Driven Controllable Emulsion Separation by a Polymerâ€Decorated Membrane with Switchable Wettability. Angewandte Chemie, 2018, 130, 5842-5847.	1.6	13
81	Novel superwetting nanofibrous skins for removing stubborn soluble oil in emulsified wastewater. Journal of Materials Chemistry A, 2021, 9, 26127-26134.	5.2	12
82	Integration of catalytic capability and pH-responsive wettability in a V _x O _y -based dual-mesh system: towards solving the trade-off between the separation flow rate and degradation efficiency. Journal of Materials Chemistry A, 2021, 9, 5454-5467.	5.2	11
83	PG–PEI–Ag NPs-Decorated Membrane for Pretreatment of Laboratory Wastewater: Simultaneous Removal of Water-Insoluble Organic Solvents and Water-Soluble Anionic Organic Pollutants. Langmuir, 2019, 35, 7680-7690.	1.6	9
84	Synthesis of a Re-usable Cellobiase Enzyme Catalyst through In situ Encapsulation in Nonsurfactant Templated Sol–Gel Mesoporous Silica. Topics in Catalysis, 2012, 55, 1247-1253.	1.3	6
85	Mesoporous SiO ₂ -Supported Pt Nanoparticles for Catalytic Application. ISRN Nanomaterials, 2013, 2013, 1-7.	0.7	5
86	One-step reduction and simultaneous decoration on various porous substrates: toward oil filtration from water. RSC Advances, 2016, 6, 86019-86024.	1.7	4
87	Discarded cigarette butts regenerated hydrophobic-oleophilic materials for both immiscible and emulsified oil/water separation through a wettability reversal strategy. Applied Surface Science, 2020, 532, 147350.	3.1	4
88	A Dually Charged Membrane for Seawater Utilization: Combining Marine Pollution Remediation and Desalination by Simultaneous Removal of Polluted Dispersed Oil, Surfactants, and Ions. ACS Applied Materials & amp; Interfaces, 2021, 13, 48171-48178.	4.0	2
89	3D inner-outer asymmetric sponge for enormous-volume emulsion wastewater treatment based on a new "demulsification-transport―mechanism. Green Energy and Environment, 2023, 8, 1398-1408.	4.7	2

20 Cover Picture: Reversible Switching between Superhydrophilicity and Superhydrophobicity (Angew.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

#	Article	IF	CITATIONS
91	Superwetting Patterned Membranes with an Anisotropy/Isotropy Transition: Towards Signal Expression and Liquid Permeation. Angewandte Chemie, 2020, 132, 13539-13545.	1.6	0