
Jianfang Fei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5365969/publications.pdf Version: 2024-02-01

LIANEANC FEI

#	Article	IF	CITATIONS
1	The Controlling Role of Boundary Layer Inertial Oscillations in Meiyu Frontal Precipitation and Its Diurnal Cycles Over China. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5090-5115.	3.3	79
2	Characteristics of Mesoscale Convective Systems over China and Its Vicinity Using Geostationary Satellite FY2. Journal of Climate, 2015, 28, 4890-4907.	3.2	58
3	Effects of the Cold Core Eddy on Tropical Cyclone Intensity and Structure under Idealized Air–Sea Interaction Conditions. Monthly Weather Review, 2013, 141, 1285-1303.	1.4	47
4	Contributions of Surface Sensible Heat Fluxes to Tropical Cyclone. Part I: Evolution of Tropical Cyclone Intensity and Structure. Journals of the Atmospheric Sciences, 2015, 72, 120-140.	1.7	44
5	An Investigation of the Influences of Mesoscale Ocean Eddies on Tropical Cyclone Intensities. Monthly Weather Review, 2017, 145, 1181-1201.	1.4	41
6	Modulation of Clouds and Rainfall by Tropical Cyclone's Cold Wakes. Geophysical Research Letters, 2020, 47, e2020GL088873.	4.0	33
7	Modulating Effects of Mesoscale Oceanic Eddies on Sea Surface Temperature Response to Tropical Cyclones Over the Western North Pacific. Journal of Geophysical Research D: Atmospheres, 2018, 123, 367-379.	3.3	31
8	Observational Occurrence of Tropical Cyclone Ducts from GPS Dropsonde Data. Journal of Applied Meteorology and Climatology, 2013, 52, 1221-1236.	1.5	25
9	Sensitivity of tropical cyclone intensity and structure to vertical resolution in WRF. Asia-Pacific Journal of Atmospheric Sciences, 2012, 48, 67-81.	2.3	22
10	Evaluation and Error Analysis of Official Tropical Cyclone Intensity Forecasts during 2005–2018 for the Western North Pacific. Journal of the Meteorological Society of Japan, 2021, 99, 139-163.	1.8	19
11	A Numerical Study on the Combined Effect of Midlatitude and Low-Latitude Systems on the Abrupt Track Deflection of Typhoon Megi (2010). Monthly Weather Review, 2014, 142, 2483-2501.	1.4	17
12	Development and validation of an evaporation duct model. Part I: Model establishment and sensitivity experiments. Journal of Meteorological Research, 2015, 29, 467-481.	2.4	17
13	A Definition of Rapid Weakening for Tropical Cyclones Over the Western North Pacific. Geophysical Research Letters, 2019, 46, 11471-11478.	4.0	17
14	Contributions of Surface Sensible Heat Fluxes to Tropical Cyclone. Part II: The Sea Spray Processes. Journals of the Atmospheric Sciences, 2015, 72, 4218-4236.	1.7	15
15	Direct/indirect effects of aerosols and their separate contributions to Typhoon Lupit (2009): Eyewall versus peripheral rainbands. Science China Earth Sciences, 2021, 64, 2113-2128.	5.2	15
16	The effects of ocean feedback on tropical cyclone energetics under idealized airâ€sea interaction conditions. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9778-9788.	3.3	14
17	A Comparison between Moist and Dry Tropical Cyclones: The Low Effectiveness of Surface Sensible Heat Flux in Storm Intensification. Journals of the Atmospheric Sciences, 2022, 79, 31-49.	1.7	14
18	Simulation of an Asian Dust Storm Event in May 2017. Atmosphere, 2019, 10, 135.	2.3	13

Jianfang Fei

#	Article	IF	CITATIONS
19	Spatiotemporal Characteristics and Associated Synoptic Patterns of Extremely Persistent Heavy Rainfall in Southern China. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	3.3	11
20	Sensitivity of the Simulated Tropical Cyclone Intensification to the Boundaryâ€Layer Height Based on a <i>Kâ€Profile</i> Boundaryâ€Layer Parameterization Scheme. Journal of Advances in Modeling Earth Systems, 2018, 10, 2912-2932.	3.8	10
21	The modulation effect of sea surface cooling on the eyewall replacement cycle in Typhoon Trami (2018). Monthly Weather Review, 2022, , .	1.4	10
22	A Study of the Interaction between Typhoon Francisco (2013) and a Cold-Core Eddy. Part II: Boundary Layer Structures. Journals of the Atmospheric Sciences, 2020, 77, 2865-2883.	1.7	9
23	A Potential Problem with the Application of Moist Static Energy in Tropical Cyclone Studies. Journals of the Atmospheric Sciences, 2015, 72, 3009-3019.	1.7	8
24	Development of a new significant wave height and dominant wave period parameterization scheme. Ocean Engineering, 2017, 135, 170-182.	4.3	8
25	Imprints of Tropical Cyclones on Structural Characteristics of Mesoscale Oceanic Eddies Over the Western North Pacific. Geophysical Research Letters, 2021, 48, e2021GL092601.	4.0	8
26	Development and validation of an evaporation duct model. Part II: Evaluation and improvement of stability functions. Journal of Meteorological Research, 2015, 29, 482-495.	2.4	6
27	Comparison of Simulated Tropical Cyclone Intensity and Structures Using the WRF with Hydrostatic and Nonhydrostatic Dynamical Cores. Atmosphere, 2018, 9, 483.	2.3	6
28	Relative roles of dry intrusion, latent heat and instabilities in the Mei-yu rainband life cycle: A case study. Atmospheric Research, 2018, 214, 10-20.	4.1	6
29	Characteristics of mesoscale convective systems during the warm season over the <scp>Tibetan Plateau</scp> based on <scp>FY</scp> â€2 satellite datasets. International Journal of Climatology, 2021, 41, 2301-2315.	3.5	6
30	Thermal Response to Tropical Cyclones Over the Kuroshio. Earth and Space Science, 2022, 9, .	2.6	6
31	Uplift Mechanism of Coastal Extremely Persistent Heavy Rainfall (EPHR): The Key Role of Lowâ€Level Jets and Ageostrophic Winds in the Boundary Layer. Geophysical Research Letters, 2022, 49, .	4.0	6
32	Rossby wave energy dispersion from tropical cyclone in zonal basic flows. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3120-3138.	3.3	5
33	Estimating the Correlated Observation-Error Characteristics of the Chinese FengYun Microwave Temperature Sounder and Microwave Humidity Sounder. Advances in Atmospheric Sciences, 2018, 35, 1428-1441.	4.3	5
34	Simulation and Analysis of the Initiation of a Squall Line within a Meiyu Frontal System in East China. Atmosphere, 2018, 9, 183.	2.3	5
35	Effect of sea spray on the numerical simulation of super typhoon â€~Ewiniar'. Journal of Ocean University of China, 2008, 7, 362-372.	1.2	4
36	Development of an integrated vertical-slantwise convective parameterization scheme and its associated numerical experiments. Journal of Meteorological Research, 2011, 25, 405-418.	1.0	4

JIANFANG FEI

#	Article	IF	CITATIONS
37	The four dimensional variational data assimilation with multiple regularization parameters as a weak constraint (Tikh-4D-Var) and its preliminary application on typhoon initialization. Science China Earth Sciences, 2014, 57, 2690-2701.	5.2	4
38	Maintenance and Sudden Change of a Strong Elevated Ducting Event Associated with High Pressure and Marine Low-Level Jet. Journal of Meteorological Research, 2020, 34, 1287-1298.	2.4	4
39	Analysis of the Winter Cloud-to-Ground Lightning Activity and Its Synoptic Background in China during 2010–20. Advances in Atmospheric Sciences, 2022, 39, 985-998.	4.3	4
40	Characteristics and Preliminary Causes of Extremely Persistent Heavy Rainfall Generated by Landfalling Tropical Cyclones Over China. Earth and Space Science, 2022, 9, .	2.6	4
41	A regional simulation study on dispersion of nuclear pollution from the damaged Fukushima Nuclear Power Plant. Science China Earth Sciences, 2014, 57, 1513-1524.	5.2	3
42	Where will tropical cyclogenesis occur around a preexisting tropical cyclone?. Geophysical Research Letters, 2017, 44, 578-586.	4.0	3
43	Numerical study on the impacts of the bogus data assimilation and sea spray parameterization on typhoon ducts. Journal of Meteorological Research, 2013, 27, 308-321.	1.0	2
44	Research of Super Typhoon Lekima: forecast, observation, numerical simulation and disaster survey. Frontiers of Earth Science, 2022, 16, 1-4.	2.1	2
45	Modeling the Shallow Cumulus-Topped Boundary Layer at Gray Zone Resolutions. Journals of the Atmospheric Sciences, 2022, 79, 2435-2451.	1.7	2
46	Statistical characteristics and mechanistic analysis of suddenly reversed tropical cyclones over the western North Pacific Ocean. Advances in Atmospheric Sciences, 2015, 32, 565-576.	4.3	1
47	Effects of Airâ€5ea Interaction on the Eyewall Replacement Cycle of Typhoon Sinlaku (2008): Verification of Numerical Simulation. Earth and Space Science, 2020, 7, e2019EA000763.	2.6	1
48	Evaluation of the impact of observations on blended sea surface winds in a two-dimensional variational scheme using degrees of freedom. Journal of Meteorological Research, 2017, 31, 1123-1132.	2.4	0
49	What is the Most Important Cause of Diurnal Cycles in Meiyu Frontal Precipitation over China?. World Scientific Series on Asia-Pacific Weather and Climate, 2021, , 133-150.	0.2	0
50	Uncertainty in TC Maximum Intensity with Fixed Ratio of Surface Exchange Coefficients for Enthalpy and Momentum. Journal of Meteorological Research, 2022, 36, 128-139.	2.4	0