
Mohammad Asaduzzaman Chowdhury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5365931/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication and characterization of jute/cotton bio-composites reinforced with eggshell particles. Polymer Bulletin, 2023, 80, 931-957.	3.3	9
2	Development of antibacterial nanofibrous wound dressing and conceptual reaction mechanism to deactivate the viral protein by Nigella sativa extract. Advances in Traditional Medicine, 2022, 22, 283-291.	2.0	5
3	Friction and wear characteristics of ceramics composite under multidirectional motions. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2022, 236, 867-880.	1.8	4
4	Development and analysis of nanoparticle infused plastic products manufactured by machine learning guided 3D printer. Polymer Testing, 2022, 106, 107429.	4.8	8
5	Erosion characteristics of stainless steels under different percentage of SiC- Al2O3-Fe2O3 solid particles. Tribology International, 2022, 167, 107403.	5.9	12
6	Modeling Fracture Formation, Behavior and Mechanics of Polymeric Materials: A Biomedical Implant Perspective. Journal of Composites Science, 2022, 6, 31.	3.0	7
7	Corrosion behavior of aluminum alloy in NaOH and Syzygium Samarangense solution for environmental sustainability. Current Research in Green and Sustainable Chemistry, 2022, 5, 100254.	5.6	12
8	Scope of 2D materials for immune response-a review. Results in Engineering, 2022, 14, 100413.	5.1	5
9	Physical, thermal, and mechanical properties of <scp>Al₂O₃</scp> / <scp>SiO₂</scp> infused jute/glass fiber resin composite materials in relation to viscosity. Polymer Composites, 2022, 43, 3971-3982.	4.6	9
10	Terminalia arjuna leaves extract as green corrosion inhibitor for mild steel in HCl solution. Results in Engineering, 2022, 14, 100438.	5.1	25
11	Improvement of Mechanical, Thermal, and Physical Behaviors of Jute/Cotton Biocomposites Reinforced by Spent Tea Leaf Particles. Journal of Composites Science, 2022, 6, 145.	3.0	1
12	Band gap formation of 2D materialin graphene: Future prospect and challenges. Results in Engineering, 2022, 15, 100474.	5.1	20
13	The aspect of the corrosion pitting with fretting fatigue on Aluminum Alloy: A nuclear reactor safety or an aerospace structural failure phenomenon. Results in Engineering, 2022, 15, 100483.	5.1	8
14	Electrocatalysis of 2,6-Dinitrophenol Based on Wet-Chemically Synthesized PbO-ZnO Microstructures. Catalysts, 2022, 12, 727.	3.5	3
15	Prospect of biobased antiviral face mask to limit the coronavirus outbreak. Environmental Research, 2021, 192, 110294.	7.5	80
16	Effect of nanocatalysts on the transesterification reaction of first, second and third generation biodiesel sources- A mini-review. Chemosphere, 2021, 270, 128642.	8.2	87
17	An overview of green corrosion inhibitors for sustainable and environment friendly industrial development. Journal of Adhesion Science and Technology, 2021, 35, 673-690.	2.6	86
18	3D-Printed Objects for Multipurpose Applications. Journal of Materials Engineering and Performance, 2021, 30, 4756-4767.	2.5	20

#	Article	IF	CITATIONS
19	A Study on the Corrosion Characteristics of Internal Combustion Engine Materials in Second-Generation Jatropha Curcas Biodiesel. Energies, 2021, 14, 4352.	3.1	5
20	Surface coatings analysis and their effects on reduction of tribological properties of coated aluminum under motion with ML approach. Materials Research Express, 2021, 8, 086508.	1.6	6
21	Improvement of corrosion resistance of galvanization/nickel/chrome plating low carbon steels in H ₂ SO ₄ under dynamic condition. Surface Topography: Metrology and Properties, 2021, 9, 035018.	1.6	2
22	Effects of Self-Lubricant Coating and Motion on Reduction of Friction and Wear of Mild Steel and Data Analysis from Machine Learning Approach. Materials, 2021, 14, 5732.	2.9	2
23	Improvement of interfacial adhesion performance of the kevlar fiber mat by depositing SiC/TiO2/Al2O3/graphene nanoparticles. Arabian Journal of Chemistry, 2021, 14, 103406.	4.9	11
24	Recent machine learning guided material research - A review. Computational Condensed Matter, 2021, 29, e00597.	2.1	4
25	Scope of eco-friendly nanoparticles for anti-microbial activity. Current Research in Green and Sustainable Chemistry, 2021, 4, 100198.	5.6	6
26	Paederia Foetida leaves extract as a green corrosion inhibitor for mild steel in hydrochloric acid solution. Current Research in Green and Sustainable Chemistry, 2021, 4, 100191.	5.6	12
27	Synthesis of emerging two-dimensional (2D) materials – Advances, challenges and prospects. FlatChem, 2021, 30, 100305.	5.6	65
28	Development and Characterization of Kevlar-Reinforced Ceramic Composite Materials. Journal of Testing and Evaluation, 2021, 49, 1631-1650.	0.7	0
29	Multiphysical analysis of nanoparticles and their effects on plants. Biotechnology and Applied Biochemistry, 2020, , .	3.1	4
30	Immune response in COVID-19: A review. Journal of Infection and Public Health, 2020, 13, 1619-1629.	4.1	281
31	Characterization of epoxy composites reinforced with CaCO3-Al2O3-MgO-TiO2/CuO filler materials. AEJ - Alexandria Engineering Journal, 2020, 59, 4121-4137.	6.4	26
32	Fretting & friction induced fatigue failure: damage criterion of polytetrafluoroethylene. Heliyon, 2020, 6, e04066.	3.2	2
33	Stature Estimation Using Ulnar Length and Shoulder Elbow Length in a Bangladeshi Population. SN Comprehensive Clinical Medicine, 2020, 2, 2754-2762.	0.6	1
34	Evaluation of the Effect of Environmental Parameters on the Spread of COVID-19: A Fuzzy Logic Approach. Advances in Fuzzy Systems, 2020, 2020, 1-5.	0.9	7
35	Relationship between Weather Variables and New Daily COVID-19 Cases in Dhaka, Bangladesh. Sustainability, 2020, 12, 8319.	3.2	28
36	Surface characterization and mechanical behavior of aluminum based metal matrix composite reinforced with nano Al2O3, SiC, TiO2 particles. Chemical Data Collections, 2020, 28, 100442.	2.3	58

#	Article	IF	CITATIONS
37	Effects of Nanoparticles on Viral Infection — A Review. Nano, 2020, 15, 2030003.	1.0	5
38	Tribological study of Al-6063-based metal matrix embedded with SiC–Al2O3–TiO2 particles. SN Applied Sciences, 2020, 2, 1.	2.9	13
39	Friction coefficient and performance evaluation of plain journal bearing using SAE 5W-30 engine oil. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2020, 234, 1222-1232.	1.8	4
40	Effect of size and shape of copper alloys particles on the mechanical and tribological behavior of friction materials. Mechanics and Industry, 2020, 21, 613.	1.3	3
41	Investigation on Microstructure and Hardness of Aluminium-Aluminium Oxide Functionally Graded Material. Lecture Notes in Mechanical Engineering, 2020, , 478-483.	0.4	1
42	Effect of Lubricating Oil on Sliding Loss and Power Loss of Nylon Gear. Lecture Notes in Mechanical Engineering, 2020, , 596-602.	0.4	0
43	Investigation of the combined effect of notch and fretting on bending fatigue. Theoretical and Applied Mechanics, 2020, 47, 113-122.	0.3	1
44	Investigation and Characterization of Gamma Radiation Shielding Capacity of Heavy Minerals-Based Composite Materials. Journal of Nuclear Engineering and Radiation Science, 2020, 6, .	0.4	2
45	A Multivariate Time Series Approach for Forecasting of Electricity Demand in Bangladesh Using ARIMAX Model. , 2020, , .		5
46	Influence of Glass Fiber Content on the Flexural Properties of Polyamide 6-Polypropylene Blend Composites. Lecture Notes in Mechanical Engineering, 2020, , 466-471.	0.4	0
47	On the diversity in design for different bending fretting fatigue mechanism. SN Applied Sciences, 2019, 1, 1.	2.9	4
48	Prediction of solar irradiation and performance evaluation of grid connected solar 80KWp PV plant in Bangladesh. Energy Reports, 2019, 5, 714-722.	5.1	43
49	Water and brine absorption capacity of epoxy based glass fiber composite modified with CaCO3–Al2O3–MgO–TiO2/CuO filler materials. Materials Research Express, 2019, 6, 115311.	1.6	2
50	Experimental investigation of refrigerator compressor piston material. AIP Conference Proceedings, 2019, , .	0.4	0
51	Characterization and performance analysis of composite bioplastics synthesized using titanium dioxide nanoparticles with corn starch. Heliyon, 2019, 5, e02009.	3.2	97
52	Failure Mechanism of Polytetrafluoroethylene Under Friction Fatigue. Journal of Failure Analysis and Prevention, 2019, 19, 245-249.	0.9	10
53	Thermal analysis of hybrid composites reinforced with Al2O3 and SiO2 filler particles. Materials Research Express, 2019, 6, 125361.	1.6	2
54	Prediction and Optimization of Erosion Rate of Carbon Fiber–Reinforced Ebonite Using Fuzzy Logic. Journal of Testing and Evaluation, 2019, 47, 1244-1258.	0.7	12

Mohammad Asaduzzaman

#	Article	IF	CITATIONS
55	Performance and Characterization of Two-Dimensional Material Graphene Conductivity—A Review. Materials Performance and Characterization, 2019, 8, 183-196.	0.3	1
56	Analysis of Artificial Neural Network for Predicting Erosive Wear of Nylon-12 Polymer. Materials Performance and Characterization, 2019, 8, 20180164.	0.3	11
57	Investigation of sustainability of lubricated journal bearing under relevant design parameters. Industrial Lubrication and Tribology, 2018, 70, 789-804.	1.3	1
58	Characteristics and damage mechanisms of bending fretting fatigue of materials. International Journal of Damage Mechanics, 2018, 27, 453-487.	4.2	14
59	Estimation of the friction coefficient in turning process of metals through model experiment. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2018, 232, 685-692.	1.8	3
60	Deposition behavior and tribological properties of diamond-like carbon coatings on stainless steels via chemical vapor deposition. International Journal of Minerals, Metallurgy and Materials, 2018, 25, 1335-1343.	4.9	3
61	Experimental investigation on flexure and impact properties of injection molded polypropylene-nylon 6-glass fiber polymer composites. IOP Conference Series: Materials Science and Engineering, 2018, 342, 012102.	0.6	4
62	Wear mechanisms of different engineering systems under higher solicitations: Overview and case studies. Engineering Failure Analysis, 2018, 94, 165-181.	4.0	2
63	Influences of thermal stability, and lubrication performance of biodegradable oil as an engine oil for improving the efficiency of heavy duty diesel engine. Fuel, 2017, 196, 36-46.	6.4	46
64	Erosion of Mild Steel for Engineering Design and Applications. Journal of Bio- and Tribo-Corrosion, 2017, 3, 1.	2.6	4
65	Study of erosive surface characterization of copper alloys under different test conditions. Surfaces and Interfaces, 2017, 9, 245-259.	3.0	4
66	Effect of loading parameter on fretting fatigue. AIP Conference Proceedings, 2017, , .	0.4	2
67	Study of erosion characterization of carbon fiber reinforced composite material. AIP Conference Proceedings, 2017, , .	0.4	4
68	Friction and wear of non-ferrous materials under artificially created vibration for machine design. International Journal of Materials Engineering Innovation, 2017, 8, 96.	0.5	0
69	Experimental and characterisation of eroded surfaces of T-glass fibre embedded in polyester matrix. International Journal of Materials Engineering Innovation, 2017, 8, 159.	0.5	1
70	The Experimental Characteristics and Evaluation of Nylon-12 in Erosion Process. Journal of Testing and Evaluation, 2017, 45, 773-787.	0.7	8
71	Investigation of thin film deposition on stainless steel 304 substrates under different operating conditions. IOP Conference Series: Materials Science and Engineering, 2016, 114, 012029.	0.6	1
72	Erosive wear characteristics of multi-fiber reinforced polyester under different operating conditions. IOP Conference Series: Materials Science and Engineering, 2016, 114, 012113.	0.6	1

#	Article	IF	CITATIONS
73	Experimental analysis of aluminum alloy under solid particle erosion process. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2016, 230, 1516-1541.	1.8	15
74	Deposition rates on stainless steel substrates of different surface roughnesses under different operating conditions using thermal CVD. International Journal of Surface Science and Engineering, 2016, 10, 282.	0.4	1
75	Influence of normal loads and sliding velocities on friction properties of engineering plastics sliding against rough counterfaces. IOP Conference Series: Materials Science and Engineering, 2016, 114, 012112.	0.6	2
76	Study of Erosion Performance and Characterization of Ebonite Reinforced With Carbon Fibers. Materials Performance and Characterization, 2016, 5, 20160091.	0.3	1
77	Experimental Evaluation of Erosion of Gunmetal under Asymmetrical Shaped Sand Particle. Advances in Tribology, 2015, 2015, 1-31.	2.1	16
78	Erosion characteristics of Teflon under different operating conditions. Journal of Polymer Engineering, 2015, 35, 889-904.	1.4	7
79	Experimental Investigation on Friction Coefficient of Composite Materials Sliding Against SS 201 and SS 301 Counterfaces. Procedia Engineering, 2015, 105, 858-864.	1.2	6
80	Experimental Investigation on Friction Coefficient of Engineering Polymers Sliding against Different Counterface Materials. Advanced Materials Research, 2014, 903, 90-95.	0.3	0
81	Frictional Characteristics of Steel Materials Sliding against Mild Steel. Advanced Materials Research, 2014, 903, 33-38.	0.3	0
82	Experimental study of friction coefficient and wear rate of turned and ground mild steel surfaces sliding against smooth and rough SS304 counterfaces. Australian Journal of Mechanical Engineering, 2014, 12, 291-304.	2.1	4
83	Sliding Friction of Steel Combinations. The Open Mechanical Engineering Journal, 2014, 8, 364-369.	0.3	6
84	Friction Coefficient and Wear Rate of Different Materials Sliding Against Stainless Steel. International Journal of Surface Engineering and Interdisciplinary Materials Science, 2013, 1, 33-45.	0.4	10
85	Influence of Sound Vibration on Diamond-Like Carbon Deposition Rate. ISRN Mechanical Engineering, 2012, 2012, 1-8.	0.9	0
86	Friction coefficient and wear rate of polymer and composite materials at different sliding speeds. International Journal of Surface Science and Engineering, 2012, 6, 231.	0.4	22
87	Effect of Load and Sliding Velocity on Friction Coefficient of Aluminum Sliding Against Different Pin Materials. American Journal of Materials Science, 2012, 2, 26-31.	2.0	41
88	The Effect of Gas Flow Rate on the Thin Film Deposition Rate on Carbon Steel Using Thermal CVD. International Journal of Chemical Reactor Engineering, 2011, 9, .	1.1	3
89	Effect of duration of rubbing and normal load on friction coefficient for polymer and composite materials. Industrial Lubrication and Tribology, 2011, 63, 320-326.	1.3	40
90	Influence of external horizontal vibration on the coefficient of friction of aluminium sliding against stainless steel. Industrial Lubrication and Tribology, 2011, 63, 152-157.	1.3	9

Mohammad Asaduzzaman

#	Article	IF	CITATIONS
91	Variation of thin film deposition rate on SS 314 with the variation of gas flow rate using CVD. Industrial Lubrication and Tribology, 2011, 63, 433-439.	1.3	2
92	The influence of natural frequency of the experimental set-up on the friction coefficient of copper. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2010, 224, 293-298.	1.8	5
93	The effect of natural frequency of the experimental setâ€up on the wear rate. Industrial Lubrication and Tribology, 2010, 62, 356-360.	1.3	4
94	The frictional behavior of materials under vertical vibration. Industrial Lubrication and Tribology, 2009, 61, 154-160.	1.3	12
95	The frictional behavior of composite materials under horizontal vibration. Industrial Lubrication and Tribology, 2009, 61, 246-253.	1.3	13
96	The Effect of Sound on Diamond Hot Filament Chemical Vapor Deposition. International Journal of Chemical Reactor Engineering, 2009, 7, .	1.1	0
97	The frictional behavior of mild steel under horizontal vibration. Tribology International, 2009, 42, 946-950.	5.9	19
98	The effect of amplitude of vibration on the coefficient of friction for different materials. Tribology International, 2008, 41, 307-314.	5.9	122
99	The Effect of Relative Humidity and Roughness on the Friction Coefficient under Horizontal Vibration. The Open Mechanical Engineering Journal, 2008, 2, 128-135.	0.3	24
100	The effect of frequency of vibration and humidity on the wear rate. Wear, 2007, 262, 198-203.	3.1	45
101	The effect of frequency of vibration and humidity on the coefficient of friction. Tribology International, 2006, 39, 958-962.	5.9	60
102	Friction Coefficient of Polymer and Composite Materials Sliding against Stainless Steel. Advanced Materials Research, 0, 576, 590-593.	0.3	1
103	Deposition on SS 316 at Different Gas Flow Rates Using Thermal CVD. Advanced Materials Research, 0, 576, 594-597.	0.3	2
104	Effects of Acetylene on Deposition Rate of Stainless Steels Using Thermal Chemical Vapor Deposition. International Journal of Engineering Research in Africa, 0, 23, 7-12.	0.7	1