Apostolos Avgeropoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5364911/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microwave Synthesis, Characterization and Perspectives of Wood Pencil-Derived Carbon. Applied Sciences (Switzerland), 2022, 12, 410.	1.3	1
2	Biomass Waste Carbonization in Piranha Solution: A Route to Hypergolic Carbons?. Micro, 2022, 2, 137-153.	0.9	1
3	Performance of Thyme Oil@Na-Montmorillonite and Thyme Oil@Organo-Modified Montmorillonite Nanostructures on the Development of Melt-Extruded Poly-L-lactic Acid Antioxidant Active Packaging Films. Molecules, 2022, 27, 1231.	1.7	8
4	Use of a Hybrid Porous Carbon Material Derived from Expired Polysaccharides Snack/Iron Salt Exhibiting Magnetic Properties, for Hexavalent Chromium Removal. Polysaccharides, 2022, 3, 326-346.	2.1	1
5	Synthesis, Molecular Characterization, and Phase Behavior of Miktoarm Star Copolymers of the AB _{<i>n</i>} and A _{<i>n</i>} B (<i>n</i> = 2 or 3) Sequences, Where A Is Polystyrene and B Is Poly(dimethylsiloxane). Macromolecules, 2022, 55, 88-99.	2.2	13
6	Superlattice Structure from Self-Assembly of High-χ Block Copolymers via Chain Interdigitation. Macromolecules, 2022, 55, 3449-3457.	2.2	7
7	Block Copolymer Modified Nanonetwork Epoxy Resin for Superior Energy Dissipation. Polymers, 2022, 14, 1891.	2.0	2
8	Nanocomposite Film Development Based on Chitosan/Polyvinyl Alcohol Using ZnO@Montmorillonite and ZnO@Halloysite Hybrid Nanostructures for Active Food Packaging Applications. Nanomaterials, 2022, 12, 1843.	1.9	21
9	Synthesis, characterization and self-assembly of linear and miktoarm star copolymers of exclusively immiscible polydienes. Polymer Chemistry, 2021, 12, 2712-2721.	1.9	5
10	Green Synthesized Magnetic Nanoparticles as Effective Nanosupport for the Immobilization of Lipase: Application for the Synthesis of Lipophenols. Nanomaterials, 2021, 11, 458.	1.9	17
11	Carbon Nanostructures Derived through Hypergolic Reaction of Conductive Polymers with Fuming Nitric Acid at Ambient Conditions. Molecules, 2021, 26, 1595.	1.7	9
12	Synthesis of a Novel Chitosan/Basil Oil Blend and Development of Novel Low Density Poly Ethylene/Chitosan/Basil Oil Active Packaging Films Following a Melt-Extrusion Process for Enhancing Chicken Breast Fillets Shelf-Life. Molecules, 2021, 26, 1585.	1.7	15
13	Mesoscale networks and corresponding transitions from self-assembly of block copolymers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	29
14	Functionalization of Single-Walled Carbon Nanotubes with End-Capped Polystyrene via a Single-Step Diels–Alder Cycloaddition. Polymers, 2021, 13, 1169.	2.0	4
15	Hypergolic Ignition of 1,3-Cyclodienes by Fuming Nitric Acid toward the Fast and Spontaneous Formation of Carbon Nanosheets at Ambient Conditions. Micro, 2021, 1, 15-27.	0.9	3
16	Structure/Properties Relationship of Anionically Synthesized Diblock Copolymers "Grafted to― Chemically Modified Graphene. Polymers, 2021, 13, 2308.	2.0	2
17	Nanocarbon from Rocket Fuel Waste: The Case of Furfuryl Alcohol-Fuming Nitric Acid Hypergolic Pair. Nanomaterials, 2021, 11, 1.	1.9	113
18	Nanoporous Carbon Magnetic Hybrid Derived from Waterlock Polymers and Its Application for Hexavalent Chromium Removal from Aqueous Solution. Journal of Carbon Research, 2021, 7, 69.	1.4	3

#	Article	IF	CITATIONS
19	Nanoclay and Polystyrene Type Efficiency on the Development of Polystyrene/Montmorillonite/Oregano Oil Antioxidant Active Packaging Nanocomposite Films. Applied Sciences (Switzerland), 2021, 11, 9364.	1.3	10
20	Self-assembly behavior of ultra-high molecular weight in-situ anionically synthesized polymer matrix composite materials "grafted from―single- or multi-wall CNTs. Polymer, 2021, 235, 124243.	1.8	2
21	Synthesis, Characterization and Structure Properties of Biobased Hybrid Copolymers Consisting of Polydiene and Polypeptide Segments. Polymers, 2021, 13, 3818.	2.0	1
22	Molecular and Structure–Properties Comparison of an Anionically Synthesized Diblock Copolymer of the PS-b-PI Sequence and Its Hydrogenated or Sulfonated Derivatives. Polymers, 2021, 13, 4167.	2.0	4
23	Inter-domain Spacing Control <i>via</i> an Interdigitating Structure to Bilayers in Lamellae-Forming Star-Block Copolymers. ACS Applied Polymer Materials, 2020, 2, 3685-3695.	2.0	7
24	Secretory Phospholipase A2-IIA Protein and mRNA Pools in Extracellular Vesicles of Bronchoalveolar Lavage Fluid from Patients with Early Acute Respiratory Distress Syndrome: A New Perception in the Dissemination of Inflammation?. Pharmaceuticals, 2020, 13, 415.	1.7	19
25	Hypergolic Materials Synthesis through Reaction of Fuming Nitric Acid with Certain Cyclopentadienyl Compounds. Journal of Carbon Research, 2020, 6, 61.	1.4	9
26	Synthesis, Characterization and Mechanical Properties of Nanocomposites Based on Novel Carbon Nanowires and Polystyrene. Applied Sciences (Switzerland), 2020, 10, 5737.	1.3	4
27	Alternating Gyroid Network Structure in an ABC Miktoarm Terpolymer Comprised of Polystyrene and Two Polydienes. Nanomaterials, 2020, 10, 1497.	1.9	8
28	Self-Assembly of Low-Molecular-Weight Asymmetric Linear Triblock Terpolymers: How Low Can We Go?. Molecules, 2020, 25, 5527.	1.7	3
29	Dendrons and Dendritic Terpolymers: Synthesis, Characterization and Self-Assembly Comparison. Molecules, 2020, 25, 6030.	1.7	4
30	Hypergolics in Carbon Nanomaterials Synthesis: New Paradigms and Perspectives. Molecules, 2020, 25, 2207.	1.7	11
31	Segregation of Maghemite Nanoparticles within Symmetric Diblock Copolymer and Triblock Terpolymer Patterns under Solvent Vapor Annealing. Materials, 2020, 13, 1286.	1.3	3
32	Functional Carbon Materials Derived through Hypergolic Reactions at Ambient Conditions. Nanomaterials, 2020, 10, 566.	1.9	13
33	Rapid Microwaveâ€Assisted Synthesis of CdS/Graphene/MoS _{<i>x</i>} Tunable Heterojunctions and Their Application in Photocatalysis. Chemistry - A European Journal, 2020, 26, 6643-6651.	1.7	22
34	Synthesis of Highly Crystalline Graphite from Spontaneous Ignition of In Situ Derived Acetylene and Chlorine at Ambient Conditions. Molecules, 2020, 25, 297.	1.7	21
35	Direct production of carbon nanosheets by self-ignition of pyrophoric lithium dialkylamides in air. Materials Letters, 2019, 254, 58-61.	1.3	12
36	Seeing mesoatomic distortions in soft-matter crystals of a double-gyroid block copolymer. Nature, 2019, 575, 175-179.	13.7	78

APOSTOLOS AVGEROPOULOS

#	Article	IF	CITATIONS
37	Exploring rheological responses to uniaxial stretching of various entangled polyisoprene melts. Journal of Rheology, 2019, 63, 763-771.	1.3	6
38	Interfacial interactions, crystallization and molecular mobility in nanocomposites of Poly(lactic) Tj ETQq0 0 0 rgBT 2019, 166, 1-12.	/Overlock 1.8	10 Tf 50 70 83
39	Three-dimensional visualization of phase transition in polystyrene-block-polydimethylsiloxane thin film. Polymer, 2019, 167, 209-214.	1.8	8
40	Monitoring fluorescent calcium signals in neural cells with organic photodetectors. Journal of Materials Chemistry C, 2019, 7, 9049-9056.	2.7	7
41	Development of Effective Lipase-Hybrid Nanoflowers Enriched with Carbon and Magnetic Nanomaterials for Biocatalytic Transformations. Nanomaterials, 2019, 9, 808.	1.9	50
42	Biodegradation of mixture of plastic films by tailored marine consortia. Journal of Hazardous Materials, 2019, 375, 33-42.	6.5	91
43	Inclusion of Quercetin in Gold Nanoparticles Decorated with Supramolecular Hosts Amplifies Its Tumor Targeting Properties. ACS Applied Bio Materials, 2019, 2, 2715-2725.	2.3	30
44	Current status, challenges and future outlook of high performance polymer semiconductors for organic photovoltaics modules. Progress in Polymer Science, 2019, 91, 51-79.	11.8	36
45	Creating Aligned Nanopores by Magnetic Field Processing of Block Copolymer/Homopolymer Blends. ACS Macro Letters, 2019, 8, 261-266.	2.3	13
46	Effect of Aryl Substituents and Fluorine Addition on the Optoelectronic Properties and Organic Solar Cell Performance of a High Efficiency Indacenodithienothiopheneâ€ <i>alt</i> â€Quinoxaline Ï€â€Conjugated Polymer. Macromolecular Chemistry and Physics, 2019, 220, 1800418.	1.1	4
47	Examination of well ordered nanonetwork materials by real- and reciprocal-space imaging. IUCrJ, 2019, 6, 259-266.	1.0	4
48	10.1122/1.5085320.1., 2019,,.		0
49	Enhancement of the Power-Conversion Efficiency of Organic Solar Cells via Unveiling an Appropriate Rational Design Strategy in Indacenodithiophene-alt-quinoxaline π-Conjugated Polymers. ACS Applied Materials & Interfaces, 2018, 10, 10236-10245.	4.0	11
50	α,β-Unsubstituted <i>meso</i> -positioning thienyl BODIPY: a promising electron deficient building block for the development of near infrared (NIR) p-type donor–acceptor (D–A) conjugated polymers. Journal of Materials Chemistry C, 2018, 6, 4030-4040.	2.7	22
51	Directed Selfâ€Assembly of Starâ€Block Copolymers by Topographic Nanopatterns through Nucleation and Growth Mechanism. Small, 2018, 14, e1704005.	5.2	12
52	Magnetic reversal and thermal stability of CoFeB perpendicular magnetic tunnel junction arrays patterned by block copolymer lithography. Nanotechnology, 2018, 29, 275302.	1.3	3
53	New nâ€Type Solution Processable All Conjugated Polymer Network: Synthesis, Optoelectronic Characterization, and Application in Organic Solar Cells. Macromolecular Rapid Communications, 2018, 39, 1700629.	2.0	7
54	Synthesis of Dâ€ <i>Ï€</i> â€Aâ€ <i>Ï€</i> type benzodithiopheneâ€quinoxaline copolymers by direct arylation and their application in organic solar cells. Journal of Polymer Science Part A, 2018, 56, 1457-1467.	2.5	20

#	Article	IF	CITATIONS
55	High-Performance Organic Photodetectors from a High-Bandgap Indacenodithiophene-Based π-Conjugated Donor–Acceptor Polymer. ACS Applied Materials & Interfaces, 2018, 10, 12937-12946.	4.0	42
56	Donorâ€specific individuality of red blood cell performance during storage is partly a function of serum uric acid levels. Transfusion, 2018, 58, 34-40.	0.8	27
57	4 <i>H</i> -1,2,6-Thiadiazine-containing donor–acceptor conjugated polymers: synthesis, optoelectronic characterization and their use in organic solar cells. Journal of Materials Chemistry C, 2018, 6, 3658-3667.	2.7	10
58	Selective FRET-based sensing of 4-nitrophenol and cell imaging capitalizing on the fluorescent properties of carbon nanodots from apple seeds. Sensors and Actuators B: Chemical, 2018, 258, 1152-1160.	4.0	77
59	Effects of alkyl side chains positioning and presence of fused aromatic units in the backbone of lowâ€bandgap diketopyrrolopyrrole copolymers on the optoelectronic properties of organic solar cells. Journal of Polymer Science Part A, 2018, 56, 138-146.	2.5	9
60	Self-assembly of polystyrene- b -poly(2-vinylpyridine)- b -poly(ethylene oxide) triblock terpolymers. European Polymer Journal, 2018, 100, 121-131.	2.6	11
61	Experimental and theoretical investigations on the optical and electrochemical properties of ï€-conjugated donor-acceptor-donor (DAD) compounds toward a universal model. Journal of Chemical Physics, 2018, 149, 124902.	1.2	10
62	Self-Alignment of Cylinder-Forming Silicon-Containing Block Copolymer Films. Macromolecules, 2018, 51, 7656-7665.	2.2	10
63	Amphiphilic Block Copolymer Microspheres Derived from Castor Oil, Poly(ε-carpolactone), and Poly(ethylene glycol): Preparation, Characterization and Application in Naltrexone Drug Delivery. Materials, 2018, 11, 1996.	1.3	11
64	Double-Layer Morphologies from a Silicon-Containing ABA Triblock Copolymer. ACS Nano, 2018, 12, 6193-6202.	7.3	23
65	Suppressing the Surface Recombination and Tuning the Open-Circuit Voltage of Polymer/Fullerene Solar Cells by Implementing an Aggregative Ternary Compound. ACS Applied Materials & Interfaces, 2018, 10, 28803-28811.	4.0	15
66	Nanostructured Composites of Sodium Montmorillonite Clay and PEO Used in Dissolution Improvement of Aprepitant Drug by Melt Mixing. Applied Sciences (Switzerland), 2018, 8, 786.	1.3	14
67	Optimal synergy between micro and nano scale: Hierarchical all carbon composite fibers for enhanced stiffness, interfacial shear strength and Raman strain sensing. Composites Science and Technology, 2018, 165, 240-249.	3.8	28
68	Metal (Ag/Ti)-Containing Hydrogenated Amorphous Carbon Nanocomposite Films with Enhanced Nanoscratch Resistance: Hybrid PECVD/PVD System and Microstructural Characteristics. Nanomaterials, 2018, 8, 209.	1.9	11
69	Nanopatterning via Self-Assembly of a Lamellar-Forming Polystyrene-block-Poly(dimethylsiloxane) Diblock Copolymer on Topographical Substrates Fabricated by Nanoimprint Lithography. Nanomaterials, 2018, 8, 32.	1.9	19
70	Porous organic polymers as emerging new materials for organic photovoltaic applications: current status and future challenges. Materials Horizons, 2017, 4, 546-556.	6.4	125
71	Low dimensional Bi 2 Te 3 -graphene oxide hybrid film-modified electrodes for ultra-sensitive stripping voltammetric detection of Pb(II) and Cd(II). Electrochimica Acta, 2017, 231, 230-237.	2.6	31
72	BODIPY-based polymeric dyes as emerging horizon materials for biological sensing and organic electronic applications. Progress in Polymer Science, 2017, 71, 26-52.	11.8	67

#	Article	IF	CITATIONS
73	Morphology, directed self-assembly and pattern transfer from a high molecular weight polystyrene-block-poly(dimethylsiloxane) block copolymer film. Nanotechnology, 2017, 28, 145301.	1.3	15
74	Beyond Donor-Acceptor (D-A) Approach: Structure-Optoelectronic Properties-Organic Photovoltaic Performance Correlation in New D-A ₁ -D-A ₂ Low-Bandgap Conjugated Polymers. Macromolecular Rapid Communications, 2017, 38, 1600720.	2.0	20
75	Gyroid-structured nanoporous polymer monolith from PDMS-containing block copolymers for templated synthesis. Polymer, 2017, 126, 360-367.	1.8	26
76	Investigations on the Phase Diagram and Interaction Parameter of Poly(styrene- <i>b</i> -1,3-cyclohexadiene) Copolymers. Macromolecules, 2017, 50, 2354-2363.	2.2	5
77	Rational Design of Highâ€Performance Wideâ€Bandgap (â‰^2 eV) Polymer Semiconductors as Electron Donors in Organic Photovoltaics Exhibiting High Open Circuit Voltages (â‰^1 V). Macromolecular Rapid Communications, 2017, 38, 1600614.	2.0	20
78	Synthesis, molecular characterization and self-assembly of (PS-b-PDMS) _n type linear (n = 1,) Tj ETQ	0000 rgl	BT /Qverlock I
79	Nanoscale silicon substrate patterns from self-assembly of cylinder forming poly(styrene)- <i>block</i> -poly(dimethylsiloxane) block copolymer on silane functionalized surfaces. Nanotechnology, 2017, 28, 044001.	1.3	4
80	Novel Castor Oilâ€Derived Block Copolymers as Promising Candidates for Biological Applications: Biorelevant and Biocompatible. Macromolecular Chemistry and Physics, 2017, 218, 1700305.	1.1	7
81	Impact of the Catalytic System on the Formation of Structural Defects for the Synthesis of Wellâ€Defined Donor–Acceptor Semiconducting Polymers. Macromolecular Chemistry and Physics, 2017, 218, 1700283.	1.1	3
82	Shear alignment of a poly(styrene-butadiene-styrene) triblock copolymer/MWCNT nanocomposite. Polymer, 2017, 131, 1-9.	1.8	23
83	Two of a kind but different: Luminescent carbon quantum dots from Citrus peels for iron and tartrazine sensing and cell imaging. Talanta, 2017, 175, 305-312.	2.9	124
84	Orienting Silicon-Containing Block Copolymer Films with Perpendicular Cylinders via Entropy and Surface Plasma Treatment. Macromolecules, 2017, 50, 9403-9410.	2.2	31
85	The role of chemical structure in indacenodithienothiophene- <i>alt</i> -benzothiadiazole copolymers for high performance organic solar cells with improved photo-stability through minimization of burn-in loss. Journal of Materials Chemistry A, 2017, 5, 25064-25076.	5.2	24
86	Indacenodithienothiophene-Based Ternary Organic Solar Cells. Frontiers in Energy Research, 2017, 4, .	1.2	8
87	Synthesis, characterization and selfâ€assembly of wellâ€defined linear heptablock quaterpolymers. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1443-1449.	2.4	13
88	Diblock copolymers of polystyreneâ€ <i>b</i> â€poly(1,3â€cyclohexadiene) exhibiting unique threeâ€phase microdomain morphologies. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1564-1572.	2.4	5
89	Morphology reâ€entry in asymmetric PSâ€PIâ€PS' triblock copolymer and PS homopolymer blends. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 169-179.	2.4	8
90	Enhancement of the Power Conversion Efficiency in Organic Photovoltaics by Unveiling the Appropriate Polymer Backbone Enlargement Approach. Advanced Functional Materials, 2016, 26, 1840-1848.	7.8	28

APOSTOLOS AVGEROPOULOS

#	Article	IF	CITATIONS
91	UV-solvent annealing of PDMS-majority and PS-majority PS- <i>b</i> -PDMS block copolymer films. Nanotechnology, 2016, 27, 465301.	1.3	11
92	Domain configurations in Co/Pd and L1 ₀ -FePt nanowire arrays with perpendicular magnetic anisotropy. Nanoscale, 2016, 8, 5358-5367.	2.8	9
93	Antibacterial, Antiâ€Biofouling, and Antioxidant Prospects of Metalâ€Based Nanomaterials. Clean - Soil, Air, Water, 2016, 44, 794-802.	0.7	15
94	Design of block copolymer membranes using segregation strength trend lines. Molecular Systems Design and Engineering, 2016, 1, 278-289.	1.7	24
95	Injectable Hydrogel: Amplifying the pH Sensitivity of a Triblock Copolypeptide by Conjugating the N-Termini via Dynamic Covalent Bonding. ACS Applied Materials & Interfaces, 2016, 8, 17539-17548.	4.0	23
96	Nanocomposites based on nanostructured PI-b-PMMA copolymer and selectively placed PMMA-modified magnetic nanoparticles: Morphological and magnetic characterization. European Polymer Journal, 2016, 75, 514-524.	2.6	8
97	Orienting Block Copolymer Thin Films via Entropy. Macromolecules, 2016, 49, 624-633.	2.2	57
98	Mechanics of an Asymmetric Hard–Soft Lamellar Nanomaterial. ACS Nano, 2016, 10, 2054-2062.	7.3	21
99	Fabrication of ultra-dense sub-10 nm in-plane Si nanowire arrays by using a novel block copolymer method: optical properties. Nanoscale, 2016, 8, 2177-2187.	2.8	16
100	Organic Solar Cells: An Alternative Strategy to Adjust the Recombination Mechanism of Organic Photovoltaics by Implementing Ternary Compounds (Adv. Energy Mater. 24/2015). Advanced Energy Materials, 2015, 5, .	10.2	1
101	Photophysics of Molecularâ€Weightâ€Induced Losses in Indacenodithienothiopheneâ€Based Solar Cells. Advanced Functional Materials, 2015, 25, 4898-4907.	7.8	61
102	Immiscible polydiene blocks in linear copolymer and terpolymer sequences. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1238-1246.	2.4	9
103	Systematic Analysis of Polymer Molecular Weight Influence on the Organic Photovoltaic Performance. Macromolecular Rapid Communications, 2015, 36, 1778-1797.	2.0	49
104	An Alternative Strategy to Adjust the Recombination Mechanism of Organic Photovoltaics by Implementing Ternary Compounds. Advanced Energy Materials, 2015, 5, 1501527.	10.2	56
105	Functionally graded poly(dimethylsiloxane)/silver nanocomposites with tailored broadband optical absorption. Thin Solid Films, 2015, 581, 14-19.	0.8	6
106	Formation of plasmonic colloidal silver for flexible and printed electronics using laser ablation. Applied Surface Science, 2015, 336, 262-266.	3.1	13
107	The impact of thienothiophene isomeric structures on the optoelectronic properties and photovoltaic performance in quinoxaline based donor–acceptor copolymers. Polymer Chemistry, 2015, 6, 3098-3109.	1.9	24
108	Aperiodic "Bricks and Mortar―Mesophase: a New Equilibrium State of Soft Matter and Application as a Stiff Thermoplastic Elastomer. Macromolecules, 2015, 48, 5378-5384.	2.2	33

#	Article	IF	CITATIONS
109	A vertical lamellae arrangement of sub-16 nm pitch (domain spacing) in a microphase separated PS-b-PEO thin film by salt addition. Journal of Materials Chemistry C, 2015, 3, 7216-7227.	2.7	14
110	Creating Extremely Asymmetric Lamellar Structures via Fluctuation-Assisted Unbinding of Miktoarm Star Block Copolymer Alloys. Journal of the American Chemical Society, 2015, 137, 6160-6163.	6.6	41
111	Combined and Distinct Contributions of Different Carbon Nano-Forms in Polypropylene. Macromolecular Materials and Engineering, 2015, 300, 611-626.	1.7	3
112	Soft Graphoepitaxy for Large Area Directed Selfâ€Assembly of Polystyreneâ€ <i>block</i> â€Poly(dimethylsiloxane) Block Copolymer on Nanopatterned POSS Substrates Fabricated by Nanoimprint Lithography. Advanced Functional Materials, 2015, 25, 3425-3432.	7.8	20
113	Sparked-bismuth oxide screen-printed electrodes for the determination of riboflavin in the sub-nanomolar range in non-deoxygenated solutions. Electrochimica Acta, 2015, 165, 410-415.	2.6	26
114	Failure behavior after stepwise uniaxial extension of entangled polymer melts. Journal of Rheology, 2015, 59, 751-767.	1.3	11
115	High throughput sub-10nm metallic particles organization on templates made by block copolymer self-assembly and nanoimprint. Microelectronic Engineering, 2015, 141, 155-159.	1.1	4
116	Amino-Functionalized Multiwalled Carbon Nanotubes Lead to Successful Ring-Opening Polymerization of Poly(ε-caprolactone): Enhanced Interfacial Bonding and Optimized Mechanical Properties. ACS Applied Materials & Interfaces, 2015, 7, 11683-11694.	4.0	21
117	Combining Graphoepitaxy and Electric Fields toward Uniaxial Alignment of Solvent-Annealed Polystyrene– <i>b</i> –Poly(dimethylsiloxane) Block Copolymers. Chemistry of Materials, 2015, 27, 6890-6898.	3.2	35
118	Carbon nanotubes/chitin nanowhiskers aerogel achieved by quaternizationâ€induced gelation. Journal of Applied Polymer Science, 2015, 132, .	1.3	12
119	Universal pattern transfer methods for metal nanostructures by block copolymer lithography. Nanotechnology, 2015, 26, 375301.	1.3	37
120	Synthesis and Self-Assembly of Amphiphilic Triblock Terpolymers with Complex Macromolecular Architecture. ACS Macro Letters, 2015, 4, 1392-1397.	2.3	14
121	Comparing linear and cyclic synthetic homopolypeptides: Synthesis and molecular characterization. Journal of Polymer Science Part A, 2015, 53, 393-404.	2.5	3
122	Synthesis via ATRP, kinetics study and characterization (molecularâ€morphological) of 3â€Arm star diblock copolymers of the (PSâ€ <i>b</i> â€P2VP) ₃ type. Journal of Polymer Science Part A, 2015, 53, 23-32.	2.5	10
123	Stimuli responsive fibrous hydrogels from hierarchical self-assembly of a triblock copolypeptide. Soft Matter, 2015, 11, 331-342.	1.2	25
124	Surface Initiated Polymerization from Graphene Oxide. Current Organic Chemistry, 2015, 19, 1757-1772.	0.9	3
125	Structural, optical, and conductive properties of a poly(styrene)â€bâ€poly(thiophene) copolymer doped with fullerenes under different conditions. Journal of Applied Polymer Science, 2014, 131, .	1.3	2
126	H-binding of size- and polarity-fractionated soil and lignite humic acids after removal of metal and ash components. Environmental Science and Pollution Research, 2014, 21, 3963-3971.	2.7	16

#	Article	IF	CITATIONS
127	Non-covalent functionalization of carbon nanotubes with polymers. RSC Advances, 2014, 4, 2911-2934.	1.7	265
128	Understanding the mechanical and thermal property reinforcement of crosslinked polyethylene by nanodiamonds and carbon nanotubes. RSC Advances, 2014, 4, 45522-45534.	1.7	14
129	Toward Strong Thermoplastic Elastomers with Asymmetric Miktoarm Block Copolymer Architectures. Macromolecules, 2014, 47, 2037-2043.	2.2	69
130	Thin Film Morphologies of Bulk-Gyroid Polystyrene- <i>block</i> -polydimethylsiloxane under Solvent Vapor Annealing. Macromolecules, 2014, 47, 6000-6008.	2.2	62
131	Retardation of Grain Growth and Grain Boundary Pinning in Athermal Block Copolymer Blend Systems. Macromolecules, 2014, 47, 1419-1427.	2.2	21
132	Factors Controlling the Enhanced Mechanical and Thermal Properties of Nanodiamond-Reinforced Cross-Linked High Density Polyethylene. Journal of Physical Chemistry B, 2014, 118, 11341-11352.	1.2	33
133	Rheology of Entangled Polymers Not Far above Glass Transition Temperature: Transient Elasticity and Intersegmental Viscous Stress. Macromolecules, 2014, 47, 5839-5850.	2.2	13
134	Substantial enhancement of PP random copolymer's thermal stability due to the addition of MWCNTs and nanodiamonds: Decomposition kinetics and mechanism study. Journal of Analytical and Applied Pyrolysis, 2014, 106, 71-80.	2.6	10
135	Morphologies of ABC Triblock Terpolymer Melts Containing Poly(Cyclohexadiene): Effects of Conformational Asymmetry. Langmuir, 2013, 29, 1995-2006.	1.6	23
136	PI-b-PMMA diblock copolymers: nanostructure development in thin films and nanostructuring of thermosetting epoxy systems. Colloid and Polymer Science, 2013, 291, 2173-2180.	1.0	1
137	Phase Transitions of Polystyrene- <i>b</i> -poly(dimethylsiloxane) in Solvents of Varying Selectivity. Macromolecules, 2013, 46, 7513-7524.	2.2	67
138	Thermoset Magnetic Materials Based on Poly(ionic liquid)s Block Copolymers. Macromolecules, 2013, 46, 1860-1867.	2.2	48
139	Role of Grain Boundary Defects During Grain Coarsening of Lamellar Block Copolymers. Macromolecules, 2013, 46, 204-215.	2.2	39
140	Achieving structural control with thin polystyrene-b-polydimethylsiloxane block copolymer films: The complex relationship of interface chemistry, annealing methodology and process conditions. European Polymer Journal, 2013, 49, 3445-3454.	2.6	29
141	Synthesis, characterization (molecular–morphological) and theoretical morphology predictions of linear triblock terpolymers containing poly(cyclohexadiene). Polymer, 2013, 54, 1480-1489.	1.8	7
142	Continuous Equilibrated Growth of Ordered Block Copolymer Thin Films by Electrospray Deposition. ACS Nano, 2013, 7, 2960-2970.	7.3	51
143	Studying the origin of "strain hardeningâ€: Basic difference between extension and shear. Journal of Rheology, 2013, 57, 89-104	1.3	62
144	Direct Visualization of Order–Order Transitions in Silicon-Containing Block Copolymers by Electron Tomography. ACS Macro Letters, 2013, 2, 190-194.	2.3	20

#	Article	IF	CITATIONS
145	Nanocomposites of Polystyrene- <i>b</i> -Poly(isoprene)- <i>b</i> -Polystyrene Triblock Copolymer with Clay–Carbon Nanotube Hybrid Nanoadditives. Journal of Physical Chemistry B, 2013, 117, 907-915.	1.2	18
146	Synthesis and molecular characterization of polythiophene and polystyrene copolymers: Simultaneous preparation of diblock and miktoarm copolymers. European Polymer Journal, 2013, 49, 1089-1097.	2.6	16
147	Enhancing the hydrophobic properties of various commercial polymers through mixtures and coatings with a fluorinated diblock copolymer in low concentrations. European Polymer Journal, 2013, 49, 1841-1851.	2.6	16
148	Breakdown of Time–Temperature Equivalence in Startup Uniaxial Extension of Entangled Polymer Melts. Macromolecules, 2013, 46, 4151-4159.	2.2	13
149	Theoretical study of phenyl-substituted indacenodithiophene copolymers for high performance organic photovoltaics. Journal of Chemical Physics, 2013, 138, 064901.	1.2	17
150	Modified Diblock Copolymer Bearing Fluoro Groups and Evaluation of its Hydrophobic Properties. Macromolecular Symposia, 2012, 321-322, 53-58.	0.4	5
151	Selective localization of multi-wall carbon nanotubes in homopolymer blends and a diblock copolymer. Rheological orientation studies of the final nanocomposites. Polymer, 2012, 53, 4438-4447.	1.8	50
152	Morphologies of poly(cyclohexadiene) diblock copolymers: Effect of conformational asymmetry. Polymer, 2012, 53, 5155-5162.	1.8	12
153	Block Copolymer Concentration Gradient and Solvent Effects on Nanostructuring of Thin Epoxy Coatings Modified with Epoxidized Styrene–Butadiene–Styrene Block Copolymers. Macromolecules, 2012, 45, 1483-1491.	2.2	24
154	Nanohybrids based on polymeric ionic liquid prepared from functionalized MWCNTs by modification of anionically synthesized poly(4-vinylpyridine). Journal of Polymer Science Part A, 2012, 50, 1181-1186.	2.5	12
155	Self-assembled thermoset materials by modification with poly(styrene)-block-poly(2-vinylpyridine). Journal of Materials Science, 2012, 47, 4348-4353.	1.7	6
156	Influence of Anion Exchange in Self-Assembling of Polymeric Ionic Liquid Block Copolymers. Macromolecules, 2011, 44, 4936-4941.	2.2	50
157	Synthesis, molecular, and morphological characterization of initial and modified diblock copolymers with organic acid chloride derivatives. Journal of Polymer Science Part A, 2011, 49, 4292-4305.	2.5	17
158	Synthesis and chemical modification of magnetic nanoparticles covalently bound to polystyreneâ€SiCl ₂ â€poly(2â€vinylpyridine). Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1668-1675.	2.4	13
159	Robust Block Copolymer Mask for Nanopatterning Polymer Films. ACS Nano, 2010, 4, 2088-2094.	7.3	90
160	Silicon oxy carbide nanorings from polystyrene-b-polydimethylsiloxane diblock copolymer thin films. Soft Matter, 2010, 6, 3582.	1.2	23
161	Synthesis of dendritic terpolymers consisting of polystyrene, polybutadiene, and polyisoprene with different isomerisms. Journal of Polymer Science Part A, 2009, 47, 1567-1574.	2.5	12
162	Strongly segregated cubic microdomain morphology consistent with the double gyroid phase in high molecular weight diblock copolymers of polystyrene and poly(dimethylsiloxane). Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 2419-2427.	2.4	41

#	Article	IF	CITATIONS
163	Functionalized organic nanoparticles from core-crosslinked poly(4-vinylbenzocyclobutene-b-butadiene) diblock copolymer micelles. Polymer, 2009, 50, 6202-6211.	1.8	16
164	Effect of Chain Architecture on the Compatibility of Block Copolymer/Nanoparticle Blends. Macromolecules, 2009, 42, 5766-5773.	2.2	25
165	A Mechanistic Study of α-(Amino acid)- <i>N</i> -carboxyanhydride Polymerization: Comparing Initiation and Termination Events in High-Vacuum and Traditional Polymerization Techniques. Macromolecules, 2009, 42, 7781-7788.	2.2	76
166	Synthesis and Molecular Characterization of Polythiophene Block Co-, Ter-Polymers and Four-Arm Star Homopolymer. International Journal of Polymer Analysis and Characterization, 2008, 13, 108-118.	0.9	5
167	Phase Behavior of Binary Blends of High Molecular Weight Diblock Copolymers with a Low Molecular Weight Triblock. Macromolecules, 2008, 41, 5785-5792.	2.2	12
168	Synthesis and Selfâ€Assembly of 2ndGeneration Dendritic Homopolymers and Copolymers of Polydienes with Different Isomeric Microstructures. Macromolecular Symposia, 2008, 267, 16-20.	0.4	16
169	Synthesis and Molecular and Morphological Characterization of Poly(p-Trimethylsilyl Styrene) and Diblock Copolymers with Poly(1,3-Cyclohexadiene). International Journal of Polymer Analysis and Characterization, 2008, 13, 136-148.	0.9	2
170	Effective interaction parameter of linear/star polymer blends and comparison with that of linear/linear and star/star blends. Journal of Chemical Physics, 2007, 126, 174904.	1.2	7
171	Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers. Journal of Physics Condensed Matter, 2007, 19, 466111.	0.7	5
172	Synthesis, molecular characterization and theoretical study of first generation dendritic homopolymers of butadiene and isoprene with different microstructures. Polymer, 2007, 48, 652-663.	1.8	21
173	Effects of the Chain Architecture on the Miscibility of Symmetric Linear/Linear and Star/Star Polymer Blends. Macromolecules, 2006, 39, 4235-4239.	2.2	10
174	Synthesis and Morphological Behavior of Model 6-Miktoarm Star Copolymers, PS(P2MP)5, of Styrene (S) and 2-Methyl-1,3-Pentadiene (P2MP). Chemistry of Materials, 2006, 18, 2164-2168.	3.2	21
175	Nanocomposites of polystyrene-b-polyisoprene copolymer with layered silicates and carbon nanotubes. European Polymer Journal, 2006, 42, 2098-2107.	2.6	35
176	A theoretical study of conformational properties of dendritic block copolymers of first generation. Journal of Chemical Physics, 2006, 125, 094908.	1.2	6
177	Linear and non-linear triblock terpolymers. Synthesis, self-assembly in selective solvents and in bulk. Progress in Polymer Science, 2005, 30, 725-782.	11.8	410
178	Characterization of a 4-miktoarm star copolymer of the (PS-b-PI)3 PS type by temperature gradient interaction chromatography. European Polymer Journal, 2003, 39, 2155-2160.	2.6	33
179	Synthesis and Morphological Behavior of Model Linear and Miktoarm Star Copolymers of 2-Methyl-1,3-Pentadiene and Styrene. Chemistry of Materials, 2003, 15, 1976-1983.	3.2	66
180	Model Linear Block Co-, Ter-, and Quaterpolymers of 1,3-Cyclohexadiene with Styrene, Isoprene, and Butadiene. Macromolecules, 2002, 35, 7928-7935.	2.2	28

#	Article	IF	CITATIONS
181	Synthesis and Microphase Separation of Linear Triblock Terpolymers of Polystyrene, High 1,4-Polybutadiene, and High 3,4-Polyisoprene. Macromolecules, 2002, 35, 4030-4035.	2.2	45
182	Swelling behavior of ordered miktoarm star block copolymer–homopolymer blends. Polymer, 2002, 43, 3257-3266.	1.8	17
183	Room-Temperature Synthesis ofa-SiO2Thin Films by UV-Assisted Ozonolysis of a Polymer Precursor. Chemistry of Materials, 2001, 13, 967-972.	3.2	48
184	Oriented double gyroid films via roll casting. Polymer, 2000, 41, 6231-6236.	1.8	33
185	Mechanical properties of the double gyroid phase in oriented thermoplastic elastomers. Journal of Materials Science, 2000, 35, 5207-5213.	1.7	43
186	Well-Defined, Model Long Chain Branched Polyethylene. 1. Synthesis and Characterization. Macromolecules, 2000, 33, 2424-2436.	2.2	153
187	Hydrodynamic properties of A8B8 type miktoarm (Vergina) stars. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 1329-1335.	2.4	24
188	Ordered Bicontinuous Nanoporous and Nanorelief Ceramic Films from Self Assembling Polymer Precursors. Science, 1999, 286, 1716-1719.	6.0	348
189	Mechanical Properties and Deformation Behavior of the Double Gyroid Phase in Unoriented Thermoplastic Elastomers. Macromolecules, 1999, 32, 8145-8152.	2.2	130
190	Dynamic probe of the interface in lamellar forming non-linear block copolymers of the (BA)3B and (BA)3B(AB)3 type. A dielectric spectroscopy study. Journal of Non-Crystalline Solids, 1998, 235-237, 485-490.	1.5	6
191	Microphase Separation in Super-H-Shaped Block Copolymer Colloids. Macromolecules, 1998, 31, 6943-6950.	2.2	15
192	Synthesis and Morphological Behavior of Silicon-Containing Triblock Copolymers for Nanostructure Applications. Chemistry of Materials, 1998, 10, 2109-2115.	3.2	60
193	Model block copolymers with complex architecture. Macromolecular Symposia, 1998, 132, 207-220.	0.4	3
194	Morphology of Vergina Star 16-Arm Block Copolymers and Scaling Behavior of Interfacial Area with Graft Point Functionality. Macromolecules, 1997, 30, 2373-2376.	2.2	67
195	Junction Point Fluctuations in Microphase Separated Polystyreneâ^'Polyisopreneâ^'Polystyrene Triblock Copolymer Melts. A Dielectric and Rheological Investigation. Macromolecules, 1997, 30, 5004-5011.	2.2	45
196	Tricontinuous Double Gyroid Cubic Phase in Triblock Copolymers of the ABA Type. Macromolecules, 1997, 30, 5634-5642.	2.2	81
197	Synthesis of model nonlinear block copolymers of A(BA)2, A(BA)3, and (AB)3A(BA)3 type. Journal of Polymer Science Part A, 1997, 35, 813-816.	2.5	51
198	Synthesis of model nonlinear block copolymers of A(BA)2, A(BA)3, and (AB)3A(BA)3 type. Journal of Polymer Science Part A, 1997, 35, 813-816.	2.5	2

#	Article	IF	CITATIONS
199	Synthesis of Model 16-Miktoarm (Vergina) Star Copolymers of the A8B8 Type. Macromolecules, 1996, 29, 6076-6078.	2.2	61
200	Synthesis of model super H-shaped block copolymers. Macromolecules, 1994, 27, 6232-6233.	2.2	76
201	CHAPTER 1. Miktoarm Star (µ-Star) Polymers: A Successful Story. RSC Polymer Chemistry Series, 0, , 1-30.	0.1	2