
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/536460/publications.pdf Version: 2024-02-01

ANNE F SIMON

#	Article	IF	CITATIONS
1	New Insights into the Mechanisms of RNA Recombination. Virology, 1997, 235, 1-9.	1.1	357
2	Effects of Defective Interfering Viruses on Virus Replication and Pathogenesis In Vitro and In Vivo. Advances in Virus Research, 1991, 40, 181-211.	0.9	225
3	Trajectories of the ribosome as a Brownian nanomachine. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17492-17497.	3.3	218
4	PLANT VIRUS SATELLITE AND DEFECTIVE INTERFERING RNAS: New Paradigms for a New Century. Annual Review of Phytopathology, 2004, 42, 415-437.	3.5	209
5	3′ Cap-Independent Translation Enhancers of Plant Viruses. Annual Review of Microbiology, 2013, 67, 21-42.	2.9	176
6	RNA-RNA Recombination and Evolution in Virus-Infected Plants. Annual Review of Phytopathology, 1994, 32, 337-362.	3.5	153
7	Sequences and structures required for recombination between virus-associated RNAs. Science, 1993, 260, 801-805.	6.0	128
8	Requirement of a 3′-Terminal Stem-loop inin VitroTranscription by an RNA-dependent RNA Polymerase. Journal of Molecular Biology, 1995, 254, 6-14.	2.0	126
9	Turnip crinkle virus defective interfering RNAs intensify viral symptoms and are generated de novo Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 9173-9177.	3.3	125
10	Recombination between satellite RNAs of turnip crinkle virus EMBO Journal, 1990, 9, 1709-1715.	3.5	122
11	The virulent satellite RNA of turnip crinkle virus has a major domain homologous to the 3′ end of the helper virus genome. EMBO Journal, 1986, 5, 3423-3428.	3.5	114
12	Nucleotide sequence of a cDNA clone of Brassica napus 12S storage protein shows homology with legumin from Pisum sativum. Plant Molecular Biology, 1985, 5, 191-201.	2.0	102
13	A novel 3'-end repair mechanism in an RNA virus. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 1113-1118.	3.3	100
14	Dissecting RNA recombination invitro: role of RNA sequences and the viral replicase. EMBO Journal, 1998, 17, 2392-2403.	3.5	100
15	RNA elements required for RNA recombination function as replication enhancers in vitro and in vivo in a plus-strand RNA virus. EMBO Journal, 1999, 18, 5653-5665.	3.5	93
16	The 3′ proximal translational enhancer of Turnip crinkle virus binds to 60S ribosomal subunits. Rna, 2008, 14, 2379-2393.	1.6	92
17	???. Journal of Molecular Biology, 1995, 245, 608-622.	2.0	90
18	Solution structure of the cap-independent translational enhancer and ribosome-binding element in the 3 [′] UTR of turnip crinkle virus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1385-1390.	3.3	89

#	Article	IF	CITATIONS
19	RNA-dependent RNA polymerase from plants infected with turnip crinkle virus can transcribe (+)- and (-)-strands of virus-associated RNAs Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 8792-8796.	3.3	83
20	Analysis of the Two Subgenomic RNA Promoters for Turnip Crinkle Virusin Vivoandin Vitro. Virology, 1997, 232, 174-186.	1.1	78
21	The Capsid Protein of Turnip Crinkle Virus Overcomes Two Separate Defense Barriers To Facilitate Systemic Movement of the Virus in Arabidopsis. Journal of Virology, 2010, 84, 7793-7802.	1.5	74
22	Structural Domains within the 3′ Untranslated Region of Turnip Crinkle Virus. Journal of Virology, 2008, 82, 8706-8720.	1.5	69
23	Susceptibility and Resistance of <i>Arabidopsis thaliana</i> to Turnip Crinkle Virus. Molecular Plant-Microbe Interactions, 1992, 5, 496.	1.4	66
24	Ribosome Binding to a 5′ Translational Enhancer Is Altered in the Presence of the 3′ Untranslated Region in Cap-Independent Translation of Turnip Crinkle Virus. Journal of Virology, 2011, 85, 4638-4653.	1.5	62
25	Repression and Derepression of Minus-Strand Synthesis in a Plus-Strand RNA Virus Replicon. Journal of Virology, 2004, 78, 7619-7633.	1.5	61
26	A Ribosome-Binding, 3′ Translational Enhancer Has a T-Shaped Structure and Engages in a Long-Distance RNA-RNA Interaction. Journal of Virology, 2012, 86, 9828-9842.	1.5	60
27	Analysis of sequences and predicted structures required for viral satellite RNA accumulation by in vivo genetic selection. Nucleic Acids Research, 1998, 26, 2426-2432.	6.5	58
28	RNase III nucleases from diverse kingdoms serve as antiviral effectors. Nature, 2017, 547, 114-117.	13.7	57
29	RNA2Drawer: geometrically strict drawing of nucleic acid structures with graphical structure editing and highlighting of complementary subsequences. RNA Biology, 2019, 16, 1667-1671.	1.5	51
30	High-frequency mutation at the adenine phosphoribosyltransferase locus in Chinese hamster ovary cells due to deletion of the gene Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 810-814.	3.3	50
31	Polymerization of nontemplate bases before transcription initiation at the 3' ends of templates by an RNA-dependent RNA polymerase: An activity involved in 3' end repair of viral RNAs. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12451-12456.	3.3	50
32	Symptom Intensification on Cruciferous Hosts by the Virulent Satellite RNA of Turnip Crinkle Virus. Phytopathology, 1990, 80, 238.	1.1	50
33	Recombination between satellite and genomic RNAs of turnip crinkle virus. Virology, 1991, 184, 791-794.	1.1	49
34	Analysisin Vivoof Turnip Crinkle Virus Satellite RNA C Variants with Mutations in the 3′-Terminal Minus-Strand Promoter. Virology, 1997, 238, 470-477.	1.1	47
35	Enhanced viral pathogenesis associated with a virulent mutant virus or a virulent satellite RNA correlates with reduced virion accumulation and abundance of free coat protein. Virology, 2003, 312, 8-13.	1.1	47
36	RNA conformational changes in the life cycles of RNA viruses, viroids, and virus-associated RNAs. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 571-583.	0.9	47

#	Article	IF	CITATIONS
37	RNA virus evasion of nonsense-mediated decay. PLoS Pathogens, 2018, 14, e1007459.	2.1	47
38	Long-distance kissing loop interactions between a 3′ proximal Y-shaped structure and apical loops of 5′ hairpins enhance translation of Saguaro cactus virus. Virology, 2011, 417, 113-125.	1.1	45
39	A Pseudoknot in a Preactive Form of a Viral RNA Is Part of a Structural Switch Activating Minus-Strand Synthesis. Journal of Virology, 2006, 80, 9181-9191.	1.5	43
40	The 3′ Untranslated Region of Pea Enation Mosaic Virus Contains Two T-Shaped, Ribosome-Binding, Cap-Independent Translation Enhancers. Journal of Virology, 2014, 88, 11696-11712.	1.5	43
41	The 3′ end of Turnip crinkle virus contains a highly interactive structure including a translational enhancer that is disrupted by binding to the RNA-dependent RNA polymerase. Rna, 2009, 15, 1849-1864.	1.6	42
42	In vivo accumulation of a turnip crinkle virus defective interfering RNA is affected by alterations in size and sequence. Journal of Virology, 1991, 65, 4582-4590.	1.5	42
43	Synthesis in vitro of infectious RNA copies of the virulent satellite of turnip crinkle virus. Virology, 1987, 156, 146-152.	1.1	41
44	Formation of multimers of linear satellite RNAs. Virology, 1991, 183, 586-594.	1.1	40
45	Minimal Sequence and Structural Requirements of a Subgenomic RNA Promoter for Turnip Crinkle Virus. Virology, 1999, 253, 327-336.	1.1	40
46	The Kissing-Loop T-Shaped Structure Translational Enhancer of Pea Enation Mosaic Virus Can Bind Simultaneously to Ribosomes and a 5′ Proximal Hairpin. Journal of Virology, 2013, 87, 11987-12002.	1.5	40
47	Analysis of cis-Acting Sequences Involved in Plus-Strand Synthesis of a Turnip Crinkle Virus-Associated Satellite RNA Identifies a New Carmovirus Replication Element. Virology, 2000, 268, 345-354.	1.1	39
48	In VitroCharacterization of Late Steps of RNA Recombination in Turnip Crinkle Virus. Virology, 1998, 249, 379-392.	1.1	35
49	CCA initiation boxes without unique promoter elements support in vitro transcription by three viral RNA-dependent RNA polymerases. Rna, 2000, 6, 698-707.	1.6	35
50	A cis-replication element functions in both orientations to enhance replication of Turnip crinkle virus. Virology, 2006, 352, 39-51.	1.1	35
51	Conformational changes involved in initiation of minus-strand synthesis of a virus-associated RNA. Rna, 2006, 12, 147-162.	1.6	35
52	3′UTRs of carmoviruses. Virus Research, 2015, 206, 27-36.	1.1	33
53	An RNA Element That Facilitates Programmed Ribosomal Readthrough in Turnip Crinkle Virus Adopts Multiple Conformations. Journal of Virology, 2016, 90, 8575-8591.	1.5	33
54	In Vivo and in Vitro Characterization of an RNA Replication Enhancer in a Satellite RNA Associated with Turnip crinkle virus. Virology, 2001, 288, 315-324.	1.1	32

#	Article	IF	CITATIONS
55	Symptom Attenuation by a Satellite RNA in Vivo Is Dependent on Reduced Levels of Virus Coat Protein. Virology, 1999, 259, 234-245.	1.1	31
56	A Multifunctional Turnip Crinkle Virus Replication Enhancer Revealed by in vivo Functional SELEX. Journal of Molecular Biology, 2003, 326, 35-48.	2.0	31
57	Multiple Cis-acting elements modulate programmed -1 ribosomal frameshifting in Pea enation mosaic virus. Nucleic Acids Research, 2016, 44, 878-895.	6.5	31
58	The Coat Protein of Turnip Crinkle Virus Is Involved in Subviral RNA-Mediated Symptom Modulation and Accumulation. Virology, 1997, 238, 478-485.	1.1	29
59	Importance of sequence and structural elements within a viral replication repressor. Virology, 2005, 333, 301-315.	1.1	28
60	In VivoRepair of 3′-End Deletions in a TCV Satellite RNA May Involve Two Abortive Synthesis and Priming Events. Virology, 1996, 226, 153-160.	1.1	27
61	A novel procedure for the localization of viral RNAs in protoplasts and whole plants. Plant Journal, 2003, 35, 665-673.	2.8	27
62	In VitroCharacterization of Late Steps of RNA Recombination in Turnip Crinkle Virus. Virology, 1998, 249, 393-405.	1.1	25
63	Synthesis of novel products in vitro by an RNA-dependent RNA polymerase. Journal of Virology, 1995, 69, 4020-4028.	1.5	25
64	Satellite RNAs of plant viruses. Plant Molecular Biology Reporter, 1988, 6, 240-252.	1.0	24
65	RNA recombination in turnip crinkle virus: its role in formation of chimeric RNAs, multimers, and in 3′-end repair. Seminars in Virology, 1996, 7, 373-379.	4.1	24
66	Evolution of virus-derived sequences for high-level replication of a subviral RNA. Virology, 2006, 351, 476-488.	1.1	24
67	Structural Analysis and Whole Genome Mapping of a New Type of Plant Virus Subviral RNA: Umbravirus-Like Associated RNAs. Viruses, 2021, 13, 646.	1.5	24
68	Requirement of a 5′-Proximal Linear Sequence on Minus Strands for Plus-Strand Synthesis of a Satellite RNA Associated with Turnip Crinkle Virus. Virology, 2000, 268, 355-363.	1.1	23
69	Analysis of a viral replication repressor: sequence requirements for a large symmetrical internal loop. Virology, 2004, 326, 90-102.	1.1	23
70	A Local, Interactive Network of 3â€2 RNA Elements Supports Translation and Replication of Turnip Crinkle Virus. Journal of Virology, 2012, 86, 4065-4081.	1.5	23
71	Concerted action of two 3′ cap-independent translation enhancers increases the competitive strength of translated viral genomes. Nucleic Acids Research, 2017, 45, 9558-9572.	6.5	23
72	The Multifunctional Long-Distance Movement Protein of <i>Pea Enation Mosaic Virus 2</i> Protects Viral and Host Transcripts from Nonsense-Mediated Decay. MBio, 2020, 11, .	1.8	23

#	Article	IF	CITATIONS
73	Structural Plasticity and Rapid Evolution in a Viral RNA Revealed by In Vivo Genetic Selection. Journal of Virology, 2009, 83, 927-939.	1.5	21
74	The terminal loop of a 3′ proximal hairpin plays a critical role in replication and the structure of the 3′ region of Turnip crinkle virus. Virology, 2010, 402, 271-280.	1.1	21
75	Biased Hypermutagenesis Associated with Mutations in an Untranslated Hairpin of an RNA Virus. Journal of Virology, 2004, 78, 7813-7817.	1.5	20
76	Importance of coat protein and RNA silencing in satellite RNA/virus interactions. Virology, 2008, 379, 161-167.	1.1	20
77	Differential use of 3'CITEs by the subgenomic RNA of Pea enation mosaic virus 2. Virology, 2017, 510, 194-204.	1.1	20
78	A Sequence-Independent, Unstructured Internal Ribosome Entry Site Is Responsible for Internal Expression of the Coat Protein of Turnip Crinkle Virus. Journal of Virology, 2017, 91, .	1.5	19
79	Targeting of viral RNAs by Upf1-mediated RNA decay pathways. Current Opinion in Virology, 2021, 47, 1-8.	2.6	19
80	Short Internal Sequences Involved in Replication and Virion Accumulation in a Subviral RNA of Turnip Crinkle Virus. Journal of Virology, 2005, 79, 512-524.	1.5	18
81	Complete Nucleotide Sequence, Genome Organization, and Comparative Genomic Analyses of Citrus Yellow-Vein Associated Virus (CYVaV). Frontiers in Microbiology, 2021, 12, 683130.	1.5	18
82	Recombination between Plus and Minus Strands of Turnip Crinkle Virus. Virology, 1994, 201, 419-423.	1.1	17
83	Fitness of a Turnip Crinkle Virus Satellite RNA Correlates with a Sequence-Nonspecific Hairpin and Flanking Sequences That Enhance Replication and Repress the Accumulation of Virions. Journal of Virology, 2003, 77, 7880-7889.	1.5	17
84	<i>Opium Poppy Mosaic Virus</i> Has an Xrn-Resistant, Translated Subgenomic RNA and a BTE 3′ CITE. Journal of Virology, 2021, 95, .	1.5	17
85	Folding behavior of a T-shaped, ribosome-binding translation enhancer implicated in a wide-spread conformational switch. ELife, 2017, 6, .	2.8	15
86	3′-End Stem-Loops of the Subviral RNAs Associated with Turnip Crinkle Virus Are Involved in Symptom Modulation and Coat Protein Binding. Journal of Virology, 2000, 74, 6528-6537.	1.5	14
87	Mutations in a satellite RNA of turnip crinkle virus result in addition of poly(U) in vivo. Virology, 1991, 183, 595-601.	1.1	13
88	Unusual dicistronic expression from closely spaced initiation codons in an umbravirus subgenomic RNA. Nucleic Acids Research, 2018, 46, 11726-11742.	6.5	12
89	Satellite RNA-Mediated Resistance to Turnip Crinkle Virus in Arabidopsis Involves a Reduction in Virus Movement. Plant Cell, 1997, 9, 2051.	3.1	11
90	Position of the kissing-loop interaction associated with PTE-type 3′CITEs can affect enhancement of cap-independent translation. Virology, 2014, 458-459, 43-52.	1.1	11

#	Article	IF	CITATIONS
91	Changes in Locations of Crossover Sites over Time inde NovoGenerated RNA Recombinants. Virology, 1996, 223, 165-173.	1.1	10
92	Callus Cultures ofArabidopsis. , 2006, Chapter 16, 16D.1.1-16D.1.9.		10
93	Genome characterization of fig umbra-like virus. Virus Genes, 2021, 57, 566-570.	0.7	10
94	Symptom Attenuation by a Normally Virulent Satellite RNA of Turnip Crinkle Virus Is Associated with the Coat Protein Open Reading Frame. Plant Cell, 1995, 7, 1625.	3.1	9
95	In Vivo, Large-Scale Preparation of Uniformly 15N- and Site-Specifically 13C-Labeled Homogeneous, Recombinant RNA for NMR Studies. Methods in Enzymology, 2015, 565, 495-535.	0.4	8
96	Complete Genome Sequence and Genome Analysis of <i>Eggplant mottled dwarf virus</i> â€ŀranian Isolate. Journal of Phytopathology, 2015, 163, 331-341.	0.5	7
97	Rapid evolution of in vivo-selected sequences and structures replacing 20% of a subviral RNA. Virology, 2015, 483, 149-162.	1.1	7
98	Preparation of biologically active Arabidopsis ribosomes and comparison with yeast ribosomes for binding to a tRNA-mimic that enhances translation of plant plus-strand RNA viruses. Frontiers in Plant Science, 2013, 4, 271.	1.7	6
99	Requirement for Host RNA-Silencing Components and the Virus-Silencing Suppressor when Second-Site Mutations Compensate for Structural Defects in the 3′ Untranslated Region. Journal of Virology, 2015, 89, 11603-11618.	1.5	6
100	In Tribute to Michael Goodin. Viruses, 2021, 13, 78.	1.5	6
101	Evolution of a helper virus-derived, ribosome binding translational enhancer in an untranslated satellite RNA of Turnip crinkle virus. Virology, 2011, 419, 10-16.	1.1	5
102	Identification of Novel 5′ and 3′ Translation Enhancers in Umbravirus-Like Coat Protein-Deficient RNA Replicons. Journal of Virology, 2022, 96, e0173621.	1.5	5
103	Two new umbravirus-like associated RNAs (ulaRNAs) discovered in maize and johnsongrass from Ecuador. Archives of Virology, 0, , .	0.9	4
104	SELEX and SHAPE reveal that sequence motifs and an extended hairpin in the 5' portion of Turnip crinkle virus satellite RNA C mediate fitness in plants. Virology, 2018, 520, 137-152.	1.1	3
105	Building bridges between plant and animal viruses. Current Opinion in Virology, 2011, 1, 319-321.	2.6	2
106	Trajectories of the ribosome as a Brownian nanomachine. journal of hand surgery Asian-Pacific volume, The, 2018, , 463-475.	0.2	2
107	Structural characterization of a new subclass of panicum mosaic virus-like 3′ cap-independent translation enhancer. Nucleic Acids Research, 2022, , .	6.5	2
108	Editorial overview: Virus–vector interactions. Current Opinion in Virology, 2015, 15, iv-vi.	2.6	1

#	Article	IF	CITATIONS
109	Combined single molecule experimental and computational approaches for understanding the unfolding pathway of a viral translation enhancer that participates in a conformational switch. RNA Biology, 2017, 14, 1466-1472.	1.5	1
110	EMBO World Lecture Course †Virus†"Host: Partners in Pathogenesis'. Future Virology, 2010, 5, 379-383.	0.9	0
111	Carmovirus. , 2011, , 1885-1894.		0
112	Studies on RNA Recombination in vivo and in vitro. , 1997, , 33-39.		0

8