Cristina Cuello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5364235/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neither frozen–thawed seminal plasma nor commercial transforming growth factorâ€Î²1 infused intraâ€utero before insemination improved fertility and prolificacy in sows. Reproduction in Domestic Animals, 2022, , .	0.6	2
2	Immunological uterine response to pig embryos before and during implantation. Reproduction in Domestic Animals, 2022, 57, 4-13.	0.6	5
3	Equilibration time with cryoprotectants, but not melatonin supplementation during <i>in vitro</i> maturation, affects viability and metaphase plate morphology of vitrified porcine mature oocytes. Reproduction in Domestic Animals, 2022, , .	0.6	1
4	Exogenous Melatonin in the Culture Medium Does Not Affect the Development of In Vivo-Derived Pig Embryos but Substantially Improves the Quality of In Vitro-Produced Embryos. Antioxidants, 2022, 11, 1177.	2.2	7
5	Effects of Vitrification on the Blastocyst Gene Expression Profile in a Porcine Model. International Journal of Molecular Sciences, 2021, 22, 1222.	1.8	18
6	Intrauterine Infusion of TGF-β1 Prior to Insemination, Alike Seminal Plasma, Influences Endometrial Cytokine Responses but Does Not Impact the Timing of the Progression of Pre-Implantation Pig Embryo Development. Biology, 2021, 10, 159.	1.3	3
7	Transcriptional Profiling of Porcine Blastocysts Produced In Vitro in a Chemically Defined Culture Medium. Animals, 2021, 11, 1414.	1.0	2
8	Vitrification Effects on the Transcriptome of in vivo-Derived Porcine Morulae. Frontiers in Veterinary Science, 2021, 8, 771996.	0.9	3
9	A Short-Term Altrenogest Treatment Post-weaning Followed by Superovulation Reduces Pregnancy Rates and Embryo Production Efficiency in Multiparous Sows. Frontiers in Veterinary Science, 2021, 8, 771573.	0.9	5
10	Three-to-5-day weaning-to-estrus intervals do not affect neither efficiency of collection nor inÂvitro developmental ability of inÂvivo-derived pig zygotes. Theriogenology, 2020, 141, 48-53.	0.9	3
11	The cytokine platelet factor 4 successfully replaces bovine serum albumin for the inÂvitro culture of porcine embryos. Theriogenology, 2020, 148, 201-207.	0.9	2
12	Allogeneic Embryos Disregulate Leukemia Inhibitory Factor (LIF) and Its Receptor in the Porcine Endometrium During Implantation. Frontiers in Veterinary Science, 2020, 7, 611598.	0.9	6
13	Blastocyst-Bearing Sows Display a Dominant Anti-Inflammatory Cytokine Profile Compared to Cyclic Sows at Day 6 of the Cycle. Animals, 2020, 10, 2028.	1.0	4
14	Seminal Plasma Induces Overexpression of Genes Associated with Embryo Development and Implantation in Day-6 Porcine Blastocysts. International Journal of Molecular Sciences, 2020, 21, 3662.	1.8	22
15	Boar seminal plasma: current insights on its potential role for assisted reproductive technologies in swine. Animal Reproduction, 2020, 17, e20200022.	0.4	9
16	Achievements and future perspectives of embryo transfer technology in pigs. Reproduction in Domestic Animals, 2019, 54, 4-13.	0.6	29
17	Supplementation with exogenous coenzyme Q10 to media for in vitro maturation and embryo culture fails to promote the developmental competence of porcine embryos. Reproduction in Domestic Animals, 2019, 54, 72-77.	0.6	21
18	Porcine blastocyst viability and developmental potential is maintained for 48â€h of liquid storage at 25â€Â°C without CO2 gassing. Theriogenology, 2019, 135, 46-55.	0.9	3

#	Article	IF	CITATIONS
19	Prevention of hatching of porcine morulae and blastocysts by liquid storage at 20 ŰC. Scientific Reports, 2019, 9, 6219.	1.6	8
20	High pre-freezing sperm dilution improves monospermy without affecting the penetration rate in porcine IVF. Theriogenology, 2019, 131, 162-168.	0.9	19
21	Seminal Plasma Modifies the Transcriptional Pattern of the Endometrium and Advances Embryo Development in Pigs. Frontiers in Veterinary Science, 2019, 6, 465.	0.9	24
22	Exogenous ascorbic acid enhances vitrification survival of porcine inÂvitro-developed blastocysts but fails to improve the inÂvitro embryo production outcomes. Theriogenology, 2018, 113, 113-119.	0.9	21
23	Eventual re-vitrification or storage in liquid nitrogen vapor does not jeopardize the practical handling and transport of vitrified pig embryos. Theriogenology, 2018, 113, 229-236.	0.9	4
24	Simple storage (CO2-free) of porcine morulae for up to three days maintains the inÂvitro viability and developmental competence. Theriogenology, 2018, 108, 229-238.	0.9	14
25	An efficiency comparison of different in vitro fertilization methods: IVF, ICSI, and PICSI for embryo development to the blastocyst stage from vitrified porcine immature oocytes. Porcine Health Management, 2018, 4, 16.	0.9	35
26	Interspecies Chimerism with Mammalian Pluripotent Stem Cells. Cell, 2017, 168, 473-486.e15.	13.5	397
27	Developmental competence of porcine genomeâ€edited zygotes. Molecular Reproduction and Development, 2017, 84, 814-821.	1.0	11
28	Effects of meiotic inhibitors and gonadotrophins on porcine oocytes in vitro maturation, fertilization and development. Reproduction in Domestic Animals, 2017, 52, 873-880.	0.6	7
29	The overlaying oil type influences in vitro embryo production: differences in composition and compound transfer into incubation medium between oils. Scientific Reports, 2017, 7, 10505.	1.6	23
30	Peroxidized mineral oil increases the oxidant status of culture media and inhibits inÂvitro porcine embryo development. Theriogenology, 2017, 103, 17-23.	0.9	16
31	Surgical embryo collection but not nonsurgical embryo transfer compromises postintervention prolificacy in sows. Theriogenology, 2017, 87, 316-320.	0.9	12
32	Non-viable sperm in the ejaculate: Lethal escorts for contemporary viable sperm. Animal Reproduction Science, 2016, 169, 24-31.	0.5	28
33	Effective vitrification and warming of porcine embryos using a pH-stable, chemically defined medium. Scientific Reports, 2016, 6, 33915.	1.6	27
34	The Recipients' Parity Does Not Influence Their Reproductive Performance Following Nonâ€ 6 urgical Deep Uterine Porcine Embryo Transfer. Reproduction in Domestic Animals, 2016, 51, 123-129.	0.6	13
35	Recent advances toward the practical application of embryo transfer in pigs. Theriogenology, 2016, 85, 152-161.	0.9	37
36	Effects of two combinations of cryoprotectants on the inÂvitro developmental capacity of vitrified immature porcine oocytes. Theriogenology, 2015, 84, 545-552.	0.9	28

#	Article	IF	CITATIONS
37	Porcine embryo production following in vitro fertilization and intracytoplasmic sperm injection from vitrified immature oocytes matured with a granulosa cell co-culture system. Cryobiology, 2015, 71, 299-305.	0.3	24
38	Nonsurgical deep uterine transfer of vitrified, in vivo-derived, porcine embryos is as effective as the default surgical approach. Scientific Reports, 2015, 5, 10587.	1.6	46
39	The use of mineral oil during inÂvitro maturation, fertilization, and embryo culture does not impair the developmental competence of pig oocytes. Theriogenology, 2015, 83, 693-702.	0.9	16
40	Successful Non-Surgical Deep Uterine Transfer of Porcine Morulae after 24 Hour Culture in a Chemically Defined Medium. PLoS ONE, 2014, 9, e104696.	1.1	45
41	An Earlier Uterine Environment Favors the <i>In Vivo</i> Development of Fresh Pig Morulae and Blastocysts Transferred by a Nonsurgical Deep-uterine Method. Journal of Reproduction and Development, 2014, 60, 371-376.	0.5	18
42	The effects of superovulation of donor sows on ovarian response and embryo development after nonsurgical deep-uterine embryo transfer. Theriogenology, 2014, 81, 832-839.	0.9	25
43	The battle of the sexes starts in the oviduct: modulation of oviductal transcriptome by X and Y-bearing spermatozoa. BMC Genomics, 2014, 15, 293.	1.2	101
44	Successful laparoscopic insemination with a very low number of flow cytometrically sorted boar sperm in field conditions. Theriogenology, 2014, 81, 315-320.	0.9	16
45	The inÂvitro and inÂvivo developmental capacity of selected porcine monospermic zygotes. Theriogenology, 2013, 79, 392-398.	0.9	12
46	Forskolin improves the cryosurvival of in vivo-derived porcine embryos at very early stages using two vitrification methods. Cryobiology, 2013, 66, 144-150.	0.3	16
47	Effect of MEM vitamins and forskolin on embryo development and vitrification tolerance of in vitro-produced pig embryos. Animal Reproduction Science, 2013, 136, 296-302.	O.5	15
48	Effects of lipid polarisation on survival of in vivo-derived porcine zygotes vitrified by the superfine open pulled-straw method. Reproduction, Fertility and Development, 2013, 25, 798.	0.1	8
49	Design, development, and application of a non-surgical deep uterine embryo transfer technique in pigs. Animal Frontiers, 2013, 3, 40-47.	0.8	16
50	Non-surgical deep intrauterine transfer of superfine open pulled straw (SOPS)-vitrified porcine embryos: Evaluation of critical steps of the procedure. Theriogenology, 2012, 78, 1339-1349.	0.9	21
51	Differences in the ability of spermatozoa from individual boar ejaculates to withstand different semen-processing techniques. Animal Reproduction Science, 2012, 132, 66-73.	0.5	34
52	Exposure of in vitro-matured porcine oocytes to SYBR-14 and fluorescence impairs their developmental capacity. Animal Reproduction Science, 2012, 133, 101-108.	0.5	2
53	Early Developing Pig Embryos Mediate Their Own Environment in the Maternal Tract. PLoS ONE, 2012, 7, e33625.	1.1	70
54	Effects of Hoechst 33342 staining and ultraviolet irradiation on mitochondrial distribution and DNA copy number in porcine oocytes and preimplantation embryos. Molecular Reproduction and Development, 2012, 79, 651-663.	1.0	20

#	Article	IF	CITATIONS
55	Unusual Systemic Metastases of Malignant Seminoma in a Dog. Reproduction in Domestic Animals, 2012, 47, e59-61.	0.6	11
56	The Effect of Glycerol Concentrations on the Postâ€thaw <i>In Vitro</i> Characteristics of Cryopreserved Sexâ€sorted Boar Spermatozoa. Reproduction in Domestic Animals, 2012, 47, 965-974.	0.6	7
57	106 THE WARMING PROCEDURE: A FIRST STEP FOR IMPROVING THE NONSURGICAL DEEP INTRAUTERINE TRANSFER OF SOPS-VITRIFIED PORCINE EMBRYOS. Reproduction, Fertility and Development, 2012, 24, 165.	0.1	0
58	Use of polarized light microscopy in porcine reproductive technologies. Theriogenology, 2011, 76, 669-677.	0.9	7
59	Effects of Hoechst 33342 staining and ultraviolet irradiation on the developmental competence of in vitro-matured porcine oocytes. Theriogenology, 2011, 76, 1667-1675.	0.9	12
60	Effects of Complement Component 3 Derivatives on Pig Oocyte Maturation, Fertilization and Early Embryo Development <i>In Vitro</i> . Reproduction in Domestic Animals, 2011, 46, 1017-1021.	0.6	17
61	Approaches Towards Efficient Use of Boar Semen in the Pig Industry. Reproduction in Domestic Animals, 2011, 46, 79-83.	0.6	54
62	90 OPEN PULLED STRAW VITRIFICATION OF IN VITRO PORCINE BLASTOCYTS IN A CHEMICALLY DEFINED MEDIUM. Reproduction, Fertility and Development, 2011, 23, 150.	0.1	0
63	Advances in Swine <i>In Vitro</i> Embryo Production Technologies. Reproduction in Domestic Animals, 2010, 45, 40-48.	0.6	121
64	Capability of frozen–thawed boar spermatozoa to sustain pre-implantational embryo development. Animal Reproduction Science, 2010, 121, 145-151.	0.5	19
65	Pentoxifylline added to freezing or post-thaw extenders does not improve the survival or in vitro fertilising capacity of boar spermatozoa. Reproduction, 2010, 139, 557-564.	1.1	15
66	Vitrification and warming of in vivo–derived porcine embryos in a chemically defined medium. Theriogenology, 2010, 73, 300-308.	0.9	27
67	In vitro postwarming viability of vitrified porcine embryos: Effect of cryostorage length. Theriogenology, 2010, 74, 486-490.	0.9	23
68	Superfine open pulled straws vitrification of porcine blastocysts does not require pretreatment with cytochalasin B and/or centrifugation. Reproduction, Fertility and Development, 2010, 22, 808.	0.1	30
69	335 EFFECT OF MEM VITAMINS AND FORSKOLIN ON IN VITRO EMBRYO PRODUCTION AND SOPS-VITRIFICATION ABILITY OF IN VITRO DERIVED PORCINE BLASTOCYSTS. Reproduction, Fertility and Development, 2010, 22, 324.	0.1	2
70	Sex-sorting sperm by flow cytometry in pigs: Issues and perspectives. Theriogenology, 2009, 71, 80-88.	0.9	46
71	<i>In Vitro</i> Fertilization (IVF) in Straws and a Short Gamete Coincubation Time Improves the Efficiency of Porcine IVF. Reproduction in Domestic Animals, 2008, 43, 747-752.	0.6	9
72	Lowâ€Dose Insemination in Pigs: Problems and Possibilities. Reproduction in Domestic Animals, 2008, 43, 347-354.	0.6	22

#	Article	IF	CITATIONS
73	Improving the Efficiency of Insemination with Sexâ€sorted Spermatozoa. Reproduction in Domestic Animals, 2008, 43, 1-8.	0.6	37
74	Effects of ultrashort gamete co-incubation time on porcine in vitro fertilization. Animal Reproduction Science, 2008, 106, 393-401.	0.5	14
75	Factors affecting the success rate of porcine embryo vitrification by the Open Pulled Straw method. Animal Reproduction Science, 2008, 108, 334-344.	0.5	43
76	New developments in low-dose insemination technology. Theriogenology, 2008, 70, 1216-1224.	0.9	37
77	Effect of the cryoprotectant concentration on the in vitro embryo development and cell proliferation of OPS-vitrified porcine blastocysts. Cryobiology, 2008, 56, 189-194.	0.3	39
78	In vitro maturation of porcine oocytes with retinoids improves embryonic development. Reproduction, Fertility and Development, 2008, 20, 483.	0.1	31
79	70 EFFECT OF CRYOPROTECTANT CONCENTRATION ON THE IN VITRO SURVIVAL AND CELL PROLIFERATION OF PORCINE BLASTOCYSTS VITRIFIED USING THE OPEN PULLED STRAW SYSTEM. Reproduction, Fertility and Development, 2008, 20, 116.	0.1	0
80	Super Open Pulled Straw Vitrification of Porcine Blastocysts: Effect of Centrifugation and Cytoskeletal Stabilization Biology of Reproduction, 2008, 78, 114-115.	1.2	1
81	Pre-pubertal Di(2-ethylhexyl) Phthalate (DEHP) Exposure of Young Boars Did Not Affect Sperm <i>In vitro</i> Penetration Capacity of Homologous Oocytes Post-puberty. Archives of Andrology, 2007, 53, 141-147.	1.0	5
82	Brief coincubation of gametes in porcine in vitro fertilization: Role of sperm:oocyte ratio and post-coincubation medium. Theriogenology, 2007, 67, 620-626.	0.9	29
83	The effectiveness of the stereomicroscopic evaluation of embryo quality in vitrified–warmed porcine blastocysts: An ultrastructural and cell death study. Theriogenology, 2007, 67, 970-982.	0.9	31
84	Vitrification of in vitro cultured porcine two-to-four cell embryos. Theriogenology, 2007, 68, 258-264.	0.9	19
85	Incidence of Unilateral Fertilizations after Low Dose Deep Intrauterine Insemination in Spontaneously Ovulating Sows under Field Conditions. Reproduction in Domestic Animals, 2006, 41, 41-47.	0.6	31
86	Challenges in Pig Artificial Insemination. Reproduction in Domestic Animals, 2006, 41, 43-53.	0.6	66
87	An update on Reproductive Technologies with Potential Short-Term Application in Pig Production. Reproduction in Domestic Animals, 2005, 40, 300-309.	0.6	38
88	Improving the efficiency of sperm technologies in pigs: the value of deep intrauterine insemination. Theriogenology, 2005, 63, 536-547.	0.9	56
89	Adjustments in IVF system for individual boars: Value of additives and time of sperm–oocyte co-incubation. Theriogenology, 2005, 64, 1783-1796.	0.9	32
90	Piglets born after non-surgical deep intrauterine transfer of vitrified blastocysts in gilts. Animal Reproduction Science, 2005, 85, 275-286.	0.5	56

#	Article	IF	CITATIONS
91	Survival and in vitro fertility of boar spermatozoa frozen in the presence of superoxide dismutase and/or catalase. Journal of Andrology, 2005, 26, 15-24.	2.0	77
92	Hoechst 33342 stain and u.v. laser exposure do not induce genotoxic effects in flow-sorted boar spermatozoa. Reproduction, 2004, 128, 615-621.	1.1	49
93	Comparative Effects of Autologous and Homologous Seminal Plasma on the Viability of Largely Extended Boar Spermatozoa. Reproduction in Domestic Animals, 2004, 39, 370-375.	0.6	59
94	Vitrification of porcine embryos at various developmental stages using different ultra-rapid cooling procedures. Theriogenology, 2004, 62, 353-361.	0.9	65
95	In vitro development following one-step dilution of OPS-vitrified porcine blastocysts. Theriogenology, 2004, 62, 1144-1152.	0.9	58
96	Influence of sperm:oocyte ratio during in vitro fertilization of in vitro matured cumulus-intact pig oocytes on fertilization parameters and embryo development. Theriogenology, 2004, 61, 551-560.	0.9	26
97	Transfer of vitrified blastocysts from one or two superovulated Large White Hyperprolific donors to Meishan recipients: reproductive parameters at Day 30 of pregnancy. Theriogenology, 2004, 61, 843-850.	0.9	28
98	Effects of Centrifugation Before Freezing on Boar Sperm Cryosurvival. Journal of Andrology, 2004, 25, 389-396.	2.0	116
99	Current progress in non-surgical embryo transfer with fresh and vitrified/warmed pig embryos. Bioscientifica Proceedings, 0, , .	1.0	0
100	The Open Cryotop System Is Effective for the Simultaneous Vitrification of a Large Number of Porcine Embryos at Different Developmental Stages. Frontiers in Veterinary Science, 0, 9, .	0.9	4