Yong-Quan Qu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5364055/yong-quan-qu-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

138	10,351	52	100
papers	citations	h-index	g-index
152	11,916 ext. citations	10.7	6.53
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
138	Phytic acid-modified CeO as Ca inhibitor for a security reversal of tumor drug resistance <i>Nano Research</i> , 2022 , 1-10	10	2
137	Boosting Electrocatalytic Activity of Ru for Acidic Hydrogen Evolution through Hydrogen Spillover Strategy. <i>ACS Energy Letters</i> , 2022 , 7, 1330-1337	20.1	4
136	Atomic-level correlation between the electrochemical performance of an oxygen-evolving catalyst and the effects of CeO2 functionalization. <i>Nano Research</i> , 2022 , 15, 2994-3000	10	3
135	Direct transformation of fatty acid-derived monomers from dimer acid manufacturing into valuable bio-plasticizers with high plasticization and compatibilization. <i>Journal of Cleaner Production</i> , 2021 , 289, 125821	10.3	2
134	Electron-Enriched Pd Nanoparticles for Selective Hydrogenation of Halonitrobenzenes to Haloanilines. <i>Catalysts</i> , 2021 , 11, 543	4	2
133	Size-Controlled Synthesis of Pd Nanocatalysts on Defect-Engineered CeO for CO Hydrogenation. <i>ACS Applied Materials & Defect Synthesis & Defect Sy</i>	9.5	9
132	Spatial intimacy of binary active-sites for selective sequential hydrogenation-condensation of nitriles into secondary imines. <i>Nature Communications</i> , 2021 , 12, 3382	17.4	3
131	A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution. <i>Nature Communications</i> , 2021 , 12, 3502	17.4	31
130	Single crystalline CeO2 nanotubes. <i>Nano Research</i> , 2021 , 14, 715-719	10	3
129	Insights into the Interfacial Lewis Acid-Base Pairs in CeO -Loaded CoS Electrocatalysts for Alkaline Hydrogen Evolution. <i>Small</i> , 2021 , 17, e2103018	11	7
128	Boosting selective hydrogenation through hydrogen spillover on supported-metal catalysts at room temperature. <i>Applied Catalysis B: Environmental</i> , 2021 , 297, 120418	21.8	12
127	Single crystal MnOOH nanotubes for selective oxidative coupling of anilines to aromatic azo compounds. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 19692-19697	13	1
126	Overcoming the Deactivation of Pt/CNT by Introducing CeO2 for Selective Base-Free Glycerol-to-Glyceric Acid Oxidation. <i>ACS Catalysis</i> , 2020 , 10, 3832-3837	13.1	22
125	Temperature-responsive dissolution/recrystallization of Zn MOF enables the maximum efficiency and recyclability of catalysts. <i>Chemical Communications</i> , 2020 , 56, 1960-1963	5.8	3
124	Dual-Active-Sites Design of Co@C Catalysts for Ultrahigh Selective Hydrogenation of N-Heteroarenes. <i>CheM</i> , 2020 , 6, 2994-3006	16.2	18
123	Pyrite-type electrocatalysts for hydrogen evolution. MRS Bulletin, 2020, 45, 555-561	3.2	1
122	A pH-Responsive Polymer-CeO Hybrid to Catalytically Generate Oxidative Stress for Tumor Therapy. <i>Small</i> , 2020 , 16, e2004654	11	16

121	Uniform small metal nanoparticles anchored on CeO2 nanorods driven by electroless chemical deposition. <i>Rare Metals</i> , 2020 , 39, 806-814	5.5	5
120	Effects of CeO2 geometry on corrosion resistance of epoxy coatings. <i>Surface Engineering</i> , 2020 , 36, 175-	-1.863	8
119	Interfacial metal-nitrogen units of NiCo/nitrogen-doped carbon for robust oxygen reduction reaction. <i>Carbon</i> , 2019 , 155, 545-552	10.4	21
118	Competitive adsorption on PtCo/CoBOx catalysts enables the selective hydrogen-reductive-imination of nitroarenes with aldehydes into imines. <i>Journal of Catalysis</i> , 2019 , 374, 72-81	7.3	11
117	Ethylene-glycol ligand environment facilitates highly efficient hydrogen evolution of Pt/CoP through proton concentration and hydrogen spillover. <i>Energy and Environmental Science</i> , 2019 , 12, 2298	-3253104	106
116	Hydrogen activation enabled by the interfacial frustrated Lewis pairs on cobalt borate nanosheets. <i>Journal of Catalysis</i> , 2019 , 372, 142-150	7.3	14
115	Engineering Surface Structure of Spinel Oxides via High-Valent Vanadium Doping for Remarkably Enhanced Electrocatalytic Oxygen Evolution Reaction. <i>ACS Applied Materials & Diterfaces</i> , 2019 , 11, 33012-33021	9.5	36
114	Chemical Doped Ternary and Quaternary Transition-Metal-Based Electrocatalysts for Hydrogen Evolution Reaction. <i>ChemCatChem</i> , 2019 , 11, 4998-5012	5.2	4
113	Cerium Phosphate as a Novel Cocatalyst Promoting NiCo2O4 Nanowire Arrays for Efficient and Robust Electrocatalytic Oxygen Evolution. <i>ACS Applied Energy Materials</i> , 2019 , 2, 5769-5776	6.1	17
112	Interfacial Frustrated Lewis Pairs of CeO Activate CO for Selective Tandem Transformation of Olefins and CO into Cyclic Carbonates. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11353-1135	7 ^{16.4}	54
111	Two-step hydrothermally synthesized Ce1-xZrxO2 for oxidative dehydrogenation of ethylbenzene with carbon dioxide. <i>Journal of CO2 Utilization</i> , 2019 , 34, 99-107	7.6	6
110	Ce-doped CoS2 pyrite with weakened O2 adsorption suppresses catalyst leaching and stabilizes electrocatalytic H2 evolution. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 17775-17781	13	19
109	Iridium-Chromium Oxide Nanowires as Highly Performed OER Catalysts in Acidic Media. <i>ChemCatChem</i> , 2019 , 11, 6008-6014	5.2	23
108	Catalytically Selective Chemotherapy from Tumor-Metabolic Generated Lactic Acid. <i>Small</i> , 2019 , 15, e19	@3746	27
107	Photolyase-Like Catalytic Behavior of CeO. <i>Nano Letters</i> , 2019 , 19, 8270-8277	11.5	34
106	Phosphatase-like Activity of Porous Nanorods of CeO for the Highly Stabilized Dephosphorylation under Interferences. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 195-201	9.5	47
105	Size-Dependent Adsorption of Styrene on Pd Clusters: A Density Functional Theory Study. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 2182-2188	3.8	8
104	Tribological behavior and characterization analysis of modified nano-CeO2 filled oily diatomite/PVDF composites. <i>Tribology International</i> , 2019 , 130, 299-307	4.9	11

103	Regulating the surface of nanoceria and its applications in heterogeneous catalysis. <i>Surface Science Reports</i> , 2018 , 73, 1-36	12.9	95
102	Strong electronic metal-support interaction of Pt/CeO2 enables efficient and selective hydrogenation of quinolines at room temperature. <i>Journal of Catalysis</i> , 2018 , 359, 101-111	7-3	95
101	Comprehensive Understanding of the Spatial Configurations of CeO2 in NiO for the Electrocatalytic Oxygen Evolution Reaction: Embedded or Surface-Loaded. <i>Advanced Functional Materials</i> , 2018 , 28, 170	06056	99
100	Catalytic Behavior of Graphene Oxides for Converting CO2 into Cyclic Carbonates at One Atmospheric Pressure. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 4204-4211	8.3	27
99	Amine-Modulated/Engineered Interfaces of NiMo Electrocatalysts for Improved Hydrogen Evolution Reaction in Alkaline Solutions. <i>ACS Applied Materials & Company Compan</i>	9.5	45
98	Wavelet analysis of extended X-ray absorption fine structure data: Theory, application. <i>Physica B: Condensed Matter</i> , 2018 , 542, 12-19	2.8	60
97	Carbon-assisted conversion reaction-based oxide nanomaterials for lithium-ion batteries. <i>Sustainable Energy and Fuels</i> , 2018 , 2, 1124-1140	5.8	25
96	Selective Semihydrogenation of Phenylacetylene to Styrene Catalyzed by Alloyed Palladium/Gold Catalysts Anchored on Cerium Oxide. <i>ChemNanoMat</i> , 2018 , 4, 472-476	3.5	9
95	Manipulating Doping of Organic Semiconductors by Reactive Oxygen for Field-Effect Transistors. <i>Physica Status Solidi - Rapid Research Letters</i> , 2018 , 12, 1800297	2.5	7
94	Dual-responsive dithio-polydopamine coated porous CeO nanorods for targeted and synergistic drug delivery. <i>International Journal of Nanomedicine</i> , 2018 , 13, 2161-2173	7-3	31
93	Facile synthesis of highly-dispersed Pt/CeO2 by a spontaneous surface redox chemical reaction for CO oxidation. <i>Catalysis Science and Technology</i> , 2018 , 8, 3233-3237	5.5	24
92	Phosphorus-Doped MoS2 Nanosheets Supported on Carbon Cloths as Efficient Hydrogen-Generation Electrocatalysts. <i>ChemCatChem</i> , 2018 , 10, 1571-1577	5.2	36
91	Understanding All-Solid Frustrated-Lewis-Pair Sites on CeO2 from Theoretical Perspectives. <i>ACS Catalysis</i> , 2018 , 8, 546-554	13.1	80
90	In Situ Formation of Isolated Bimetallic PtCe Sites of Single-Dispersed Pt on CeO for Low-Temperature CO Oxidation. <i>ACS Applied Materials & Dispersed Pt on CeO for Low-Temperature Co Oxidation</i> . <i>ACS Applied Materials & Dispersed Pt on CeO for Low-Temperature Co Oxidation</i> . <i>ACS Applied Materials & Dispersed Pt on CeO for Low-Temperature Co Oxidation</i> .	9.5	38
89	Semi-solid and solid frustrated Lewis pair catalysts. <i>Chemical Society Reviews</i> , 2018 , 47, 5541-5553	58.5	52
88	Tuning chemical compositions of bimetallic AuPd catalysts for selective catalytic hydrogenation of halogenated quinolines. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 3260-3266	13	33
87	Graphene and Their Hybrid Electrocatalysts for Water Splitting. ChemCatChem, 2017, 9, 1554-1568	5.2	58
86	Towards highly active Pd/CeO for alkene hydrogenation by tuning Pd dispersion and surface properties of the catalysts. <i>Nanoscale</i> , 2017 , 9, 3140-3149	7.7	28

(2016-2017)

85	Unveiling a Key Intermediate in Solvent Vapor Postannealing to Enlarge Crystalline Domains of Organometal Halide Perovskite Films. <i>Advanced Functional Materials</i> , 2017 , 27, 1604944	15.6	86
84	Additive-Free, Robust H2 Production from H2O and DMF by Dehydrogenation Catalyzed by Cu/Cu2O Formed In Situ. <i>Angewandte Chemie</i> , 2017 , 129, 8357-8361	3.6	6
83	Additive-Free, Robust H Production from H O and DMF by Dehydrogenation Catalyzed by Cu/Cu O Formed In Situ. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8245-8249	16.4	18
82	Synergistic and targeted drug delivery based on nano-CeO capped with galactose functionalized pillar[5]arene via host-guest interactions. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 3483-3487	7.3	34
81	CsPbBr3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous HCl detection. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 309-313	7.1	62
80	Solid frustrated-Lewis-pair catalysts constructed by regulations on surface defects of porous nanorods of CeO. <i>Nature Communications</i> , 2017 , 8, 15266	17.4	160
79	Quantitatively Intrinsic Biomimetic Catalytic Activity of Nanocerias as Radical Scavengers and Their Ability against HO and Doxorubicin-Induced Oxidative Stress. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 23342-23352	9.5	30
78	Modulating electronic structure of CoP electrocatalysts towards enhanced hydrogen evolution by Ce chemical doping in both acidic and basic media. <i>Nano Energy</i> , 2017 , 38, 290-296	17.1	142
77	Quaternary pyrite-structured nickel/cobalt phosphosulfide nanowires on carbon cloth as efficient and robust electrodes for water electrolysis. <i>Nano Research</i> , 2017 , 10, 814-825	10	57
76	Integration of inverse nanocone array based bismuth vanadate photoanodes and bandgap-tunable perovskite solar cells for efficient self-powered solar water splitting. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 19091-19097	13	33
75	Pressure Regulations on the Surface Properties of CeO2 Nanorods and Their Catalytic Activity for CO Oxidation and Nitrile Hydrolysis Reactions. <i>ACS Applied Materials & District Activity for Company of the Properties of CeO2 Nanorods and Their Catalytic Activity for Company of the Properties of CeO2 Nanorods and Their Catalytic Activity for Company of the Properties of CeO2 Nanorods and Their Catalytic Activity for Company of the Properties of CeO2 Nanorods and Their Catalytic Activity for Company of the Properties of CeO2 Nanorods and Their Catalytic Activity for Company of the Properties of CeO2 Nanorods and Their Catalytic Activity for CeO2 Nanorods and National N</i>	6 ^{9.5}	37
74	FeOx@carbon yolk/shell nanowires with tailored void spaces as stable and high-capacity anodes for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 12487-12496	13	38
73	Hierarchical Dual-Scaffolds Enhance Charge Separation and Collection for High Efficiency Semitransparent Perovskite Solar Cells. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600484	4.6	34
72	Influence of fluorination on the properties and performance of isoindigoquaterthiophene-based polymers. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5039-5043	13	31
71	High Catalytic Activity and Chemoselectivity of Sub-nanometric Pd Clusters on Porous Nanorods of CeO2 for Hydrogenation of Nitroarenes. <i>Journal of the American Chemical Society</i> , 2016 , 138, 2629-37	16.4	291
70	Morphology Evolution of Tin-Based Oxide Hierarchical Structures Synthesized by Molten Salt Approach and Their Applications as Anode for Lithium Ion Battery. <i>Crystal Growth and Design</i> , 2016 , 16, 34-41	3.5	11
69	Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions. <i>Nano Energy</i> , 2016 , 27, 247-254	17.1	143
68	Thermally stable sandwich-type catalysts of Pt nanoparticles encapsulated in CeO2 nanorod/CeO2 nanoparticle core/shell supports for methane oxidation at high temperatures. <i>RSC Advances</i> , 2016 , 6, 40323-40329	3.7	8

67	Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting. <i>ACS Applied Materials & Acs Applied & Acs Appli</i>	9.5	162
66	One-Dimensional Silicon Nanowire Composites for Photocatalysis. World Scientific Series in Nanoscience and Nanotechnology, 2016 , 57-80	0.1	1
65	Mechanistic Insights on Ternary Ni2MCoxP for Hydrogen Evolution and Their Hybrids with Graphene as Highly Efficient and Robust Catalysts for Overall Water Splitting. <i>Advanced Functional Materials</i> , 2016 , 26, 6785-6796	15.6	422
64	Structural influence of porous FeOx@C nanorods on their performance as anodes of lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 18649-18656	13	16
63	Pt/porous nanorods of ceria as efficient high temperature catalysts with remarkable catalytic stability for carbon dioxide reforming of methane. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 18074-1808	3 2 3	21
62	Facile synthesis of CoX (X = S, P) as an efficient electrocatalyst for hydrogen evolution reaction. Journal of Materials Chemistry A, 2015 , 3, 13066-13071	13	58
61	Visible-Light-Activated SuzukiMiyaura Coupling Reactions of Aryl Chlorides over the Multifunctional Pd/Au/Porous Nanorods of CeO2 Catalysts. <i>ACS Catalysis</i> , 2015 , 5, 6481-6488	13.1	98
60	Origin of the Different Photoelectrochemical Performance of Mesoporous BiVO4 Photoanodes between the BiVO4 and the FTO Side Illumination. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 23350-233	3 3 7	58
59	Terthiophene-based D-A polymer with an asymmetric arrangement of alkyl chains that enables efficient polymer solar cells. <i>Journal of the American Chemical Society</i> , 2015 , 137, 14149-57	16.4	358
58	Protection strategy for improved catalytic stability of silicon photoanodes for water oxidation. <i>Science Bulletin</i> , 2015 , 60, 1395-1402	10.6	27
57	Hollow Fluffy Co3O4 Cages as Efficient Electroactive Materials for Supercapacitors and Oxygen Evolution Reaction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 20322-31	9.5	129
56	A bottom-up synthesis of #e2O3 nanoaggregates and their composites with graphene as high performance anodes in lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 2158-2165	13	41
55	Ultrathin porous Co3O4 nanoplates as highly efficient oxygen evolution catalysts. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8107-8114	13	82
54	3D graphene/nylon rope as a skeleton for noble metal nanocatalysts for highly efficient heterogeneous continuous-flow reactions. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 10504-10511	13	27
53	Highly sensitive and robust peroxidase-like activity of porous nanorods of ceria and their application for breast cancer detection. <i>Biomaterials</i> , 2015 , 59, 116-24	15.6	173
52	Surface engineering on CeOIhanorods by chemical redox etching and their enhanced catalytic activity for CO oxidation. <i>Nanoscale</i> , 2015 , 7, 11686-91	7.7	113
51	Insights into the effects of surface properties of oxides on the catalytic activity of Pd for C-C coupling reactions. <i>Nanoscale</i> , 2015 , 7, 3016-21	7.7	33
50	Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction. <i>Nanoscale</i> , 2014 , 6, 2603-7	7.7	95

(2012-2014)

49	Integration of molecular and enzymatic catalysts on graphene for biomimetic generation of antithrombotic species. <i>Nature Communications</i> , 2014 , 5, 3200	17.4	83
48	Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy. <i>Carbon</i> , 2014 , 66, 713-719	10.4	106
47	Low pressure induced porous nanorods of ceria with high reducibility and large oxygen storage capacity: synthesis and catalytic applications. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16459-16466	13	79
46	One-step synthesis of multi-walled carbon nanotubes/ultra-thin Ni(OH)2 nanoplate composite as efficient catalysts for water oxidation. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 11799-11806	13	110
45	Repeatable fluorescence switcher of Eu3+-doped CeO2 nanorods by L(+)-ascorbic acid and hydrogen peroxide. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 8729-8735	7.1	20
44	Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics. <i>NPG Asia Materials</i> , 2014 , 6, e108-e108	10.3	119
43	Interfacial effects of the CuO/GO composite to mediate the side reactions of N,N-dimethylformamide fragments. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 22174-82	9.5	10
42	Surface engineering of one-dimensional tin oxide nanostructures for chemical sensors. <i>Mikrochimica Acta</i> , 2013 , 180, 1181-1200	5.8	20
41	Progress, challenge and perspective of heterogeneous photocatalysts. <i>Chemical Society Reviews</i> , 2013 , 42, 2568-80	58.5	1056
40	High performance amorphous ZnMgO/carbon nanotube composite thin-film transistors with a tunable threshold voltage. <i>Nanoscale</i> , 2013 , 5, 2830-4	7.7	8
39	Enhanced single strand breaks of supercoiled DNA in a matrix of gold nanotubes under X-ray irradiation. <i>Journal of Colloid and Interface Science</i> , 2012 , 378, 70-6	9.3	11
38	A simple approach towards uniform spherical Ag-like nanoparticles. <i>Nanoscale</i> , 2012 , 4, 3036-9	7.7	9
37	A systematic study of atmospheric pressure chemical vapor deposition growth of large-area monolayer graphene. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1498-1503		66
36	Towards highly efficient photocatalysts using semiconductor nanoarchitectures. <i>Energy and Environmental Science</i> , 2012 , 5, 6732	35.4	335
35	One-dimensional homogeneous and heterogeneous nanowires for solar energy conversion. <i>Journal of Materials Chemistry</i> , 2012 , 22, 16171		47
34	Graphene-Supported Hemin as a Highly Active Biomimetic Oxidation Catalyst. <i>Angewandte Chemie</i> , 2012 , 124, 3888-3891	3.6	71
33	InnenrEktitelbild: Graphene-Supported Hemin as a Highly Active Biomimetic Oxidation Catalyst (Angew. Chem. 16/2012). <i>Angewandte Chemie</i> , 2012 , 124, 4045-4045	3.6	
32	Graphene-supported hemin as a highly active biomimetic oxidation catalyst. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 3822-5	16.4	275

31	Inside Back Cover: Graphene-Supported Hemin as a Highly Active Biomimetic Oxidation Catalyst (Angew. Chem. Int. Ed. 16/2012). <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 3975-3975	16.4	
30	Aerosolization System for Experimental Inhalation Studies of Carbon-Based Nanomaterials. <i>Aerosol Science and Technology</i> , 2012 , 46, 94-107	3.4	5
29	Unveiling the formation pathway of single crystalline porous silicon nanowires. <i>ACS Applied Materials & ACS Applied</i>	9.5	142
28	Plasmonic enhancements of photocatalytic activity of Pt/n-Si/Ag photodiodes using Au/Ag core/shell nanorods. <i>Journal of the American Chemical Society</i> , 2011 , 133, 16730-3	16.4	114
27	pH-Operated mechanized porous silicon nanoparticles. <i>Journal of the American Chemical Society</i> , 2011 , 133, 8798-801	16.4	135
26	Porous silicon nanowires. <i>Nanoscale</i> , 2011 , 3, 4060-8	7.7	117
25	Synthesis and electric properties of dicobalt silicide nanobelts. <i>Chemical Communications</i> , 2011 , 47, 125	55 <u>5</u> 78	14
24	High-speed graphene transistors with a self-aligned nanowire gate. <i>Nature</i> , 2010 , 467, 305-8	50.4	1031
23	Single-layer graphene on Al2O3/Si substrate: better contrast and higher performance of graphene transistors. <i>Nanotechnology</i> , 2010 , 21, 015705	3.4	78
22	High-kappa oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 6711-5	11.5	161
21	Probing Site Activity of Monodisperse Pt Nanoparticle Catalysts Using Steam Reforming of Methane. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 254-259	6.4	17
20	Photocatalytic Properties of Porous Silicon Nanowires. <i>Journal of Materials Chemistry</i> , 2010 , 20, 3590-3	594	112
19	Sub-100 nm channel length graphene transistors. <i>Nano Letters</i> , 2010 , 10, 3952-6	11.5	145
18	Rational design and synthesis of freestanding photoelectric nanodevices as highly efficient photocatalysts. <i>Nano Letters</i> , 2010 , 10, 1941-9	11.5	59
17	Heterointegration of Pt/Si/Ag Nanowire Photodiodes and Their Photocatalytic Properties. <i>Advanced Functional Materials</i> , 2010 , 20, 3005-3011	15.6	27
16	High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics. <i>Advanced Materials</i> , 2010 , 22, 1941-5	24	120
15	Plasmonic Modulation of the Upconversion Fluorescence in NaYF4:Yb/Tm Hexaplate Nanocrystals Using Gold Nanoparticles or Nanoshells. <i>Angewandte Chemie</i> , 2010 , 122, 2927-2930	3.6	78
14	Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 2865-8	16.4	317

LIST OF PUBLICATIONS

13	Electrically conductive and optically active porous silicon nanowires. Nano Letters, 2009, 9, 4539-43	11.5	303
12	Carbon Dioxide Reforming of Methane by Ni/Co Nanoparticle Catalysts Immobilized on Single-Walled Carbon Nanotubes. <i>Energy & Energy & 2008</i> , 22, 2183-2187	4.1	20
11	Recognition of melting of nanoparticle catalysts with cubically shaped Co3O4 nanoparticles. <i>Journal of Colloid and Interface Science</i> , 2008 , 321, 251-5	9.3	5
10	Nanoscale energy deposition by X-ray absorbing nanostructures. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 11622-5	3.4	178
9	Synthesis of tubular gold and silver nanoshells using silica nanowire core templates. <i>Langmuir</i> , 2006 , 22, 6367-74	4	42
8	Silica nanocoils. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 8296-301	3.4	22
7	Surface modification of gold nanotubules via microwave radiation, sonication and chemical etching. <i>Chemical Physics Letters</i> , 2006 , 432, 195-199	2.5	6
6	Silicon-based nanowires from silicon wafers catalyzed by cobalt nanoparticles in a hydrogen environment. <i>Chemical Communications</i> , 2005 , 2274-6	5.8	24
5	Theoretical investigations on CH2CHILH2OH on the Si(100)-21 and Ge(100)-21 surfaces. <i>Surface Science</i> , 2005 , 586, 45-55	1.8	16
4	Quantum chemical study of surface reactions of glycine on the Si(100)-2¶ surface. <i>Surface Science</i> , 2004 , 569, 12-22	1.8	30
3	Theoretical Studies of Benzonitrile at the Si(100)-2¶ Surface. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 8305-8310	3.4	18
2	Dissociative Adsorption of Methylsilane on the Si(100)-2 🛭 Surface. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 15103-15109	3.4	11

Structures of Semiconductor Surfaces and Origins of Surface Reactivity with Organic Molecules27-49