
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5363969/publications.pdf Version: 2024-02-01

ΡΔ:ι Μαμικα

#	Article	IF	CITATIONS
1	Rapid sequence evolution is associated with genetic incompatibilities in the plastid Clp complex. Plant Molecular Biology, 2022, 108, 277-287.	2.0	6
2	Multiple sgRNAs for one-step inactivation of the duplicated <i>acetyl-coenzyme A carboxylase 2</i> (<i>ACC2</i>) genes in <i>Brassica napus</i> . Plant Physiology, 2022, 189, 178-187.	2.3	5
3	Transformation of the Plastid Genome in Tobacco: The Model System for Chloroplast Genome Engineering. Methods in Molecular Biology, 2021, 2317, 135-153.	0.4	3
4	Prospects for Reengineering <i>Agrobacterium tumefaciens</i> for T-DNA Delivery to Chloroplasts. Plant Physiology, 2021, 186, 215-220.	2.3	3
5	Plastid Marker Gene Excision in the Tobacco Shoot Apex by Agrobacterium-Delivered Cre Recombinase. Methods in Molecular Biology, 2021, 2317, 177-193.	0.4	1
6	Independent translation of ORFs in dicistronic operons, synthetic building blocks for polycistronic chloroplast gene expression. Plant Journal, 2020, 103, 2318-2329.	2.8	10
7	New Tools for Engineering the Arabidopsis Plastid Genome. Plant Physiology, 2019, 181, 394-398.	2.3	11
8	Engineered PPR proteins as inducible switches to activate the expression of chloroplast transgenes. Nature Plants, 2019, 5, 505-511.	4.7	49
9	Engineered RNA-binding protein for transgene activation in non-green plastids. Nature Plants, 2019, 5, 486-490.	4.7	36
10	Covalent-display of an active chimeric-recombinant tissue plasminogen activator on polyhydroxybutyrate granules surface. Biotechnology Letters, 2017, 39, 1683-1688.	1.1	3
11	Efficient Plastid Transformation in Arabidopsis. Plant Physiology, 2017, 175, 186-193.	2.3	57
12	Cell-to-cell movement of mitochondria in plants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3395-3400.	3.3	51
13	Plastid Genotyping Reveals Uniformity of cms-T Maize Cytoplasms. Plant Physiology, 2015, 169, pp.01147.2015.	2.3	20
14	RNA Editing in Chloroplasts of Spirodela polyrhiza, an Aquatic Monocotelydonous Species. PLoS ONE, 2015, 10, e0140285.	1.1	27
15	Steroid-inducible BABY BOOM system for development of fertile Arabidopsis thaliana plants after prolonged tissue culture. Plant Cell Reports, 2015, 34, 1849-1856.	2.8	23
16	Two Distinct Plastid Genome Configurations and Unprecedented Intraspecies Length Variation in the accD Coding Region in Medicago truncatula. DNA Research, 2014, 21, 417-427.	1.5	65
17	Plastid Transformation in Nicotiana tabacum and Nicotiana sylvestris by Biolistic DNA Delivery to Leaves. Methods in Molecular Biology, 2014, 1132, 147-163.	0.4	17
18	Plastid Marker Gene Excision in Greenhouse-Grown Tobacco by Agrobacterium-Delivered Cre Recombinase. Methods in Molecular Biology, 2014, 1132, 205-220.	0.4	0

#	Article	IF	CITATIONS
19	Spectinomycin resistance mutations in the rrn16 gene are new plastid markers in Medicago sativa. Theoretical and Applied Genetics, 2012, 125, 1517-1523.	1.8	7
20	Plastid Transformation in Flowering Plants. Advances in Photosynthesis and Respiration, 2012, , 393-414.	1.0	16
21	Cell-to-cell movement of plastids in plants. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2439-2443.	3.3	69
22	Visual marker and <i>Agrobacterium</i> â€delivered recombinase enable the manipulation of the plastid genome in greenhouseâ€grown tobacco plants. Plant Journal, 2012, 70, 717-725.	2.8	10
23	Exceptional inheritance of plastids via pollen in <i>Nicotiana sylvestris</i> with no detectable paternal mitochondrial DNA in the progeny. Plant Journal, 2012, 72, 84-88.	2.8	28
24	Engineering the Plastid Genome of Nicotiana sylvestris, a Diploid Model Species for Plastid Genetics. Methods in Molecular Biology, 2011, 701, 37-50.	0.4	24
25	Visual spectinomycin resistance (aadA au) gene for facile identification of transplastomic sectors in tobacco leaves. Plant Molecular Biology, 2011, 76, 453-461.	2.0	17
26	Transplastomics in Arabidopsis: Progress Toward Developing an Efficient Method. Methods in Molecular Biology, 2011, 774, 133-147.	0.4	7
27	Plastid Biotechnology: Food, Fuel, and Medicine for the 21st Century. Plant Physiology, 2011, 155, 1501-1510.	2.3	169
28	Study of Plastid Genome Stability in Tobacco Reveals That the Loss of Marker Genes Is More Likely by Gene Conversion Than by Recombination between 34-bp <i>loxP</i> Repeats. Plant Physiology, 2010, 153, 252-259.	2.3	11
29	Autoluminescent Plants. PLoS ONE, 2010, 5, e15461.	1.1	65
30	Chloroplasts as expression platforms for plant-produced vaccines. Expert Review of Vaccines, 2010, 9, 893-911.	2.0	80
31	Next generation synthetic vectors for transformation of the plastid genome of higher plants. Plant Molecular Biology, 2009, 70, 487-498.	2.0	33
32	Translational fusion of chloroplast-expressed human papillomavirus type 16 L1 capsid protein enhances antigen accumulation in transplastomic tobacco. Transgenic Research, 2008, 17, 1091-1102.	1.3	78
33	Plastid genomes in a regenerating tobacco shoot derive from a small number of copies selected through a stochastic process. Plant Journal, 2008, 56, 975-983.	2.8	24
34	The Catalytic Properties of Hybrid Rubisco Comprising Tobacco Small and Sunflower Large Subunits Mirror the Kinetically Equivalent Source Rubiscos and Can Support Tobacco Growth. Plant Physiology, 2008, 146, 83-96.	2.3	109
35	Exceptional transmission of plastids and mitochondria from the transplastomic pollen parent and its impact on transgene containment. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7003-7008.	3.3	151
36	Transformation of the Plastid Genome to Study RNA Editing. Methods in Enzymology, 2007, 424, 501-518.	0.4	20

#	Article	IF	CITATIONS
37	Construction of marker-free transplastomic plants. Current Opinion in Biotechnology, 2007, 18, 107-114.	3.3	58
38	Exceptional paternal inheritance of plastids in Arabidopsis suggests that lowâ€frequency leakage of plastids via pollen may be universal in plants. Plant Journal, 2007, 52, 817-823.	2.8	80
39	A Guide to Choosing Vectors for Transformation of the Plastid Genome of Higher Plants. Plant Physiology, 2007, 145, 1201-1210.	2.3	60
40	DNA markers define plastid haplotypes in Arabidopsis thaliana. Current Genetics, 2007, 51, 269-275.	0.8	4
41	Plastid marker gene excision by the phiC31 phage site-specific recombinase. Plant Molecular Biology, 2007, 64, 137-143.	2.0	70
42	Plastid marker-gene excision by transiently expressed CRE recombinase. Plant Journal, 2006, 45, 447-456.	2.8	54
43	Construction of marker-free transplastomic tobacco using the Cre-loxP site-specific recombination system. Nature Protocols, 2006, 1, 900-910.	5.5	61
44	Gene activation in plastids by the CRE site-specific recombinase. Plant Molecular Biology, 2006, 61, 711-718.	2.0	30
45	Expression of the cry9Aa2 B.t. gene in tobacco chloroplasts confers resistance to potato tuber moth. Transgenic Research, 2006, 15, 481-488.	1.3	93
46	Protection against tetanus toxin using a plant-based vaccine. European Journal of Immunology, 2005, 35, 1320-1326.	1.6	56
47	New vectors and marker excision systems mark progress in engineering the plastid genome of higher plants. Photochemical and Photobiological Sciences, 2005, 4, 971.	1.6	13
48	Overexpression of phage-type RNA polymerase RpoTp in tobacco demonstrates its role in chloroplast transcription by recognizing a distinct promoter type. Nucleic Acids Research, 2004, 32, 1159-1165.	6.5	54
49	A novel approach to plastid transformation utilizes the phiC31 phage integrase. Plant Journal, 2004, 37, 906-913.	2.8	83
50	Affinity purification of the tobacco plastid RNA polymerase and in vitro reconstitution of the holoenzyme. Plant Journal, 2004, 40, 164-172.	2.8	101
51	Plant biotechnology. Current Opinion in Plant Biology, 2004, 7, 149-151.	3.5	18
52	New advances in the production of edible plant vaccines: chloroplast expression of a tetanus vaccine antigen, TetC. Phytochemistry, 2004, 65, 989-994.	1.4	37
53	PLASTID TRANSFORMATION IN HIGHER PLANTS. Annual Review of Plant Biology, 2004, 55, 289-313.	8.6	449
54	Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic Research, 2003, 12, 115-122.	1.3	103

#	Article	IF	CITATIONS
55	Progress towards commercialization of plastid transformation technology. Trends in Biotechnology, 2003, 21, 20-28.	4.9	156
56	Deletion of the tobacco plastidpsbAgene triggers an upregulation of the thylakoid-associated NAD(P)H dehydrogenase complex and the plastid terminal oxidase (PTOX). Plant Journal, 2003, 35, 704-716.	2.8	50
57	Identification of functionalloxsites in the plastid genome. Plant Journal, 2003, 35, 753-762.	2.8	32
58	The plastid clpP1 protease gene is essential for plant development. Nature, 2003, 425, 86-89.	13.7	189
59	Mobile plastid genes. Nature, 2003, 422, 31-32.	13.7	9
60	Expression of tetanus toxin Fragment C in tobacco chloroplasts. Nucleic Acids Research, 2003, 31, 1174-1179.	6.5	204
61	Unique Architecture of the Plastid Ribosomal RNA Operon Promoter Recognized by the Multisubunit RNA Polymerase in Tobacco and Other Higher Plants. Plant Cell, 2003, 15, 195-205.	3.1	51
62	Overexpression of the clpP 5′-Untranslated Region in a Chimeric Context Causes a Mutant Phenotype, Suggesting Competition for a clpP-Specific RNA Maturation Factor in Tobacco Chloroplasts. Plant Physiology, 2002, 129, 1600-1606.	2.3	43
63	Engineering the plastid genome of higher plants. Current Opinion in Plant Biology, 2002, 5, 164-172.	3.5	179
64	Lack of conservation of editing sites in mRNAs that encode subunits of the NAD(P)H dehydrogenase complex in plastids and mitochondria of Arabidopsis thaliana. Current Genetics, 2001, 40, 214-219.	0.8	29
65	Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant Journal, 2001, 27, 171-178.	2.8	165
66	Expression of bar in the Plastid Genome Confers Herbicide Resistance. Plant Physiology, 2001, 125, 1585-1590.	2.3	142
67	Plastid engineering bears fruit. Nature Biotechnology, 2001, 19, 826-827.	9.4	20
68	Complementarity of the 16S rRNA penultimate stem with sequences downstream of the AUG destabilizes the plastid mRNAs. Nucleic Acids Research, 2001, 29, 970-975.	6.5	114
69	Sequences Downstream of the Translation Initiation Codon Are Important Determinants of Translation Efficiency in Chloroplasts. Plant Physiology, 2001, 125, 430-436.	2.3	139
70	Engineering of the rpl23 gene cluster to replace the plastid RNA polymerase α subunit with the Escherichia coli homologue. Current Genetics, 2000, 38, 218-225.	0.8	12
71	Plastome Engineering of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase in Tobacco to Form a Sunflower Large Subunit and Tobacco Small Subunit Hybrid1. Plant Physiology, 1999, 119, 133-142.	2.3	117
72	Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nature Biotechnology, 1999, 17, 910-915.	9.4	222

#	Article	IF	CITATIONS
73	Transplastomic Technology for Safer and Better Transgenic Crops. Nature Biotechnology, 1999, 17, 28-28.	9.4	1
74	Reply Chlororespiration: only half a story. Trends in Plant Science, 1999, 4, 51.	4.3	5
75	Transcription from Heterologous rRNA Operon Promoters in Chloroplasts Reveals Requirement for Specific Activating Factors1. Plant Physiology, 1998, 117, 1495-1499.	2.3	55
76	Plastid transformation in Arabidopsis thaliana. Plant Cell Reports, 1998, 18, 20-24.	2.8	160
77	Two plastid RNA polymerases of higher plants: an evolving story. Trends in Plant Science, 1998, 3, 4-6.	4.3	136
78	Judging the homoplastomic state of plastid transformants. Trends in Plant Science, 1998, 3, 376-377.	4.3	29
79	RNA Polymerase Subunits Encoded by the Plastid rpoGenes Are Not Shared with the Nucleus-Encoded Plastid Enzyme1. Plant Physiology, 1998, 117, 1165-1170.	2.3	117
80	rbcL Transcript Levels in Tobacco Plastids Are Independent of Light: Reduced Dark Transcription Rate Is Compensated by Increased mRNA Stability. Plant Cell, 1998, 10, 1713-1722.	3.1	105
81	rbcL Transcript Levels in Tobacco Plastids Are Independent of Light: Reduced Dark Transcription Rate Is Compensated by Increased mRNA Stability. Plant Cell, 1998, 10, 1713.	3.1	7
82	The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO Journal, 1997, 16, 4041-4048.	3.5	476
83	A negative selection scheme based on the expression of cytosine deaminase in plastids. Plant Journal, 1997, 12, 697-701.	2.8	20
84	Expression of a chimeric uidA gene indicates that polycistronic mRNAs are efficiently translated in tobacco plastids. Plant Journal, 1995, 7, 845-848.	2.8	85
85	In vivo testing of a tobacco plastid DNA segment for guide RNA function in psbL editing. Molecular Genetics and Genomics, 1995, 247, 439-443.	2.4	39
86	Amplification of a Chimeric Bacillus Gene in Chloroplasts Leads to an Extraordinary Level of an Insecticidal Protein in Tobacco. Nature Biotechnology, 1995, 13, 362-365.	9.4	253
87	Targeted Insertion of Foreign Genes into the Tobacco Plastid Genome without Physical Linkage to the Selectable Marker Gene. Bio/technology, 1995, 13, 791-794.	1.9	48
88	Correct splicing of a group II intron from a chimeric reporter gene transcript in tobacco plastids. Nucleic Acids Research, 1995, 23, 2544-2547.	6.5	26
89	The small, versatilepPZP family ofAgrobacterium binary vectors for plant transformation. Plant Molecular Biology, 1994, 25, 989-994.	2.0	1,474
90	Translation of psbA mRNA is regulated by light via the 5'-untranslated region in tobacco plastids. Plant Journal, 1994, 6, 547-553.	2.8	166

#	Article	IF	CITATIONS
91	Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Research, 1994, 22, 3819-3824.	6.5	179
92	Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Molecular Genetics and Genomics, 1993, 241-241, 49-56.	2.4	163
93	Stable Plastid Transformation in PEG-treated Protoplasts of Nicotiana tabacum. Nature Biotechnology, 1993, 11, 95-97.	9.4	109
94	Towards plastid transformation in flowering plants. Trends in Biotechnology, 1993, 11, 101-107.	4.9	91
95	Tobacco lines with high copy number of replicating recombinant geminivirus vectors after biolistic DNA delivery. Plant Journal, 1992, 2, 457-463.	2.8	22
96	When is it appropriate to cite?—A reply. Plant Molecular Biology Reporter, 1991, 9, 100-101.	1.0	0
97	Mutation proximal to the tRNA binding region of the Nicotiana plastid 16S rRNA confers resistance to spectinomycin. Molecular Genetics and Genomics, 1991, 228, 316-319.	2.4	82
98	Gentamycin resistance in Nicotiana conferred by AAC(3)-I, a narrow substrate specificity acetyltransferase. Plant Molecular Biology, 1991, 17, 301-303.	2.0	28
99	Streptomycin and lincomycin resistances are selective plastid markers in cultured Nicotiana cells. Molecular Genetics and Genomics, 1990, 221, 245.	2.4	28
100	Aminoglycoside-3?-adenyltransferase confers resistance to spectinomycin and streptomycin in Nicotiana tabacum. Plant Molecular Biology, 1990, 14, 197-205.	2.0	59
101	The pFF plasmids: cassettes utilising CaMV sequences for expression of foreign genes in plants. Journal of Biotechnology, 1990, 14, 333-344.	1.9	151
102	Improved expression of streptomycin resistance in plants due to a deletion in the streptomycin phosphotransferase coding sequence. Molecular Genetics and Genomics, 1988, 214, 456-459.	2.4	39
103	Rapid chloroplast segregation and recombination of mitochondrial DNA in brassica cybrids. Molecular Genetics and Genomics, 1987, 209, 240-246.	2.4	90
104	A dominant nuclear streptomycin resistance marker for plant cell transformation. Molecular Genetics and Genomics, 1987, 210, 86-91.	2.4	42
105	Fusion-mediated transfer of triazine-resistant chloroplasts: Characterization of Nicotiana tabacum cybrid plants. Molecular Genetics and Genomics, 1986, 205, 201-205.	2.4	41
106	Triazine-resistant Nicotiana mutants from photomixotrophic cell cultures. Molecular Genetics and Genomics, 1985, 200, 508-510.	2.4	50
107	Large scale isolation of maternally inherited lincomycin resistance mutations, in diploid Nicotiana plumbaginifolia protoplast cultures. Molecular Genetics and Genomics, 1984, 196, 407-412.	2.4	48
108	Interspecific protoplast fusion to rescue a cytoplasmic lincomycin resistance mutation into fertile Nicotiana plumbaginifolia plants. Molecular Genetics and Genomics, 1984, 198, 7-11.	2.4	32

#	Article	IF	CITATIONS
109	Transfer of cytoplasmic male sterility by selection for streptomycin resistance after protoplast fusion in Nicotiana. Molecular Genetics and Genomics, 1983, 189, 365-369.	2.4	57
110	Nitrate reductase deficient cell lines from haploid protoplast cultures ofNicotiana plumbaginifolia. Molecular Genetics and Genomics, 1982, 186, 301-304.	2.4	92
111	Fusion-complementation analysis of auxotrophic and chlorophyll-deficient lines isolated in haploidNicotiana plumbaginifolia protoplast cultures. Molecular Genetics and Genomics, 1982, 186, 328-332.	2.4	34
112	Complementation in somatic hybrids indicates four types of nitrate reductase deficient lines in Nicotiana plumbaginifolia. Molecular Genetics and Genomics, 1982, 187, 1-3.	2.4	61
113	Lincomycin resistance, a new type of maternally inherited mutation in Nicotiana plumbaginifolia. Current Genetics, 1982, 6, 105-109.	0.8	44
114	Cytoplast-protoplast fusion for interspecific chloroplast transfer in Nicotiana. Molecular Genetics and Genomics, 1982, 185, 211-215.	2.4	100
115	EFFECT OF RADIATION DOSAGE ON EFFICIENCY OF CHLOROPLAST TRANSFER BY PROTOPLAST FUSION IN NICOTIANA. Genetics, 1982, 100, 487-495.	1.2	109
116	Rapid clonal multiplication of Digitalis lanata in tissue culture. Plant Cell Reports, 1981, 1, 34-35.	2.8	38
117	Extensive rearrangements in the mitochondrial DNA in somatic hybrids of Nicotiana tabacum and Nicotiana knightiana. Molecular Genetics and Genomics, 1981, 183, 437-439.	2.4	93
118	Chloroplast transfer in Nicotiana based on metabolic complementation between irradiated and iodoacetate treated protoplasts. Planta, 1981, 152, 341-345.	1.6	162
119	Isoleucine-requiring Nicotiana plant deficient in threonine deaminase. Nature, 1981, 294, 87-88.	13.7	75
120	The use of cytoplasmic streptomycin resistance: Chloroplast transfer from Nicotiana tabacum into Nicotiana sylvestris, and Isolation of their somatic hybrids. Molecular Genetics and Genomics, 1980, 179, 693-698.	2.4	156
121	Genetic instability in somatic hybrids of Nicotiana tabacum and Nicotiana knightiana. Molecular Genetics and Genomics, 1978, 163, 145-151.	2.4	62
122	Restoration of morphogenic potential in Nicotiana by somatic hybridisation. Molecular Genetics and Genomics, 1977, 157, 291-296.	2.4	102
123	Transient cycloheximide resistance in a tobacco cell line. Molecular Genetics and Genomics, 1976, 149, 267-271.	2.4	50