List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5363485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stuck in Division or Passing through. Developmental Cell, 2004, 7, 637-651.	7.0	599
2	Asymmetric CLASP-Dependent Nucleation of Noncentrosomal Microtubules at the trans-Golgi Network. Developmental Cell, 2007, 12, 917-930.	7.0	481
3	Essential Roles of <i>Drosophila</i> Inner Centromere Protein (Incenp) and Aurora B in Histone H3 Phosphorylation, Metaphase Chromosome Alignment, Kinetochore Disjunction, and Chromosome Segregation. Journal of Cell Biology, 2001, 153, 865-880.	5.2	442
4	The dynamic kinetochore-microtubule interface. Journal of Cell Science, 2004, 117, 5461-5477.	2.0	346
5	Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. Journal of Cell Biology, 2004, 167, 831-840.	5.2	284
6	Microtubule detyrosination guides chromosomes during mitosis. Science, 2015, 348, 799-803.	12.6	202
7	Human CLASP1 Is an Outer Kinetochore Component that Regulates Spindle Microtubule Dynamics. Cell, 2003, 113, 891-904.	28.9	199
8	Drosophila CLASP is required for the incorporation of microtubule subunits into fluxing kinetochore fibres. Nature Cell Biology, 2005, 7, 42-47.	10.3	176
9	Mechanisms of Chromosome Congression during Mitosis. Biology, 2017, 6, 13.	2.8	139
10	Mitotic spindle multipolarity without centrosome amplification. Nature Cell Biology, 2014, 16, 386-394.	10.3	134
11	Kinetochore motors drive congression of peripheral polar chromosomes by overcoming random arm-ejection forces. Nature Cell Biology, 2014, 16, 1249-1256.	10.3	128
12	CLASP1, astrin and Kif2b form a molecular switch that regulates kinetochore-microtubule dynamics to promote mitotic progression and fidelity. EMBO Journal, 2010, 29, 3531-3543.	7.8	123
13	MAST/Orbit has a role in microtubule–kinetochore attachment and is essential for chromosome alignment and maintenance of spindle bipolarity. Journal of Cell Biology, 2002, 157, 749-760.	5.2	121
14	Motor-Independent Targeting of CLASPs to Kinetochores by CENP-E Promotes Microtubule Turnover and Poleward Flux. Current Biology, 2009, 19, 1566-1572.	3.9	120
15	Mammalian CLASP1 and CLASP2 Cooperate to Ensure Mitotic Fidelity by Regulating Spindle and Kinetochore Function. Molecular Biology of the Cell, 2006, 17, 4526-4542.	2.1	116
16	Heterochromatin boundaries are hotspots for de novo kinetochore formation. Nature Cell Biology, 2011, 13, 799-808.	10.3	114
17	Spatiotemporal control of mitosis by the conserved spindle matrix protein Megator. Journal of Cell Biology, 2009, 184, 647-657.	5.2	111
18	Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis. Journal of Cell Biology, 2012, 198, 847-863.	5.2	111

#	Article	IF	CITATIONS
19	Feedback control of chromosome separation by a midzone Aurora B gradient. Science, 2014, 345, 332-336.	12.6	111
20	Mast, a conserved microtubule-associated protein required for bipolar mitotic spindle organization. EMBO Journal, 2000, 19, 3668-3682.	7.8	106
21	Chromosome Segregation Is Biased by Kinetochore Size. Current Biology, 2018, 28, 1344-1356.e5.	3.9	94
22	Synchronizing chromosome segregation by flux-dependent force equalization at kinetochores. Journal of Cell Biology, 2009, 186, 11-26.	5.2	88
23	CLASPs prevent irreversible multipolarity by ensuring spindle-pole resistance to traction forces during chromosome alignment. Nature Cell Biology, 2012, 14, 295-303.	10.3	88
24	Cdk1 and Plk1 mediate a CLASP2 phospho-switch that stabilizes kinetochore–microtubule attachments. Journal of Cell Biology, 2012, 199, 285-301.	5.2	80
25	Differential regulation of transition zone and centriole proteins contributes to ciliary base diversity. Nature Cell Biology, 2018, 20, 928-941.	10.3	78
26	Microtubule-Associated Proteins and Their Essential Roles During Mitosis. International Review of Cytology, 2004, 241, 53-153.	6.2	66
27	Kinetochores Use a Novel Mechanism for Coordinating the Dynamics of Individual Microtubules. Current Biology, 2006, 16, 1217-1223.	3.9	65
28	Dual Role of Topoisomerase II in Centromere Resolution and Aurora B Activity. PLoS Biology, 2008, 6, e207.	5.6	65
29	Spindle assembly checkpoint robustness requires Tpr-mediated regulation of Mad1/Mad2 proteostasis. Journal of Cell Biology, 2013, 203, 883-893.	5.2	63
30	Genes involved in centrosome-independent mitotic spindle assembly in <i>Drosophila</i> S2 cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19808-19813.	7.1	62
31	The Tubulin Code: A Navigation System for Chromosomes during Mitosis. Trends in Cell Biology, 2016, 26, 766-775.	7.9	60
32	An organelle-exclusion envelope assists mitosis and underlies distinct molecular crowding in the spindle region. Journal of Cell Biology, 2015, 210, 695-704.	5.2	59
33	Microtubule poleward flux in human cells is driven by the coordinated action of four kinesins. EMBO Journal, 2020, 39, e105432.	7.8	59
34	The ultrastructure of the kinetochore and kinetochore fiber in Drosophila somatic cells. Chromosoma, 2006, 115, 469-480.	2.2	56
35	Aurora B spatially regulates EB3 phosphorylation to coordinate daughter cell adhesion with cytokinesis. Journal of Cell Biology, 2013, 201, 709-724.	5.2	54
36	Late mitotic functions of Aurora kinases. Chromosoma, 2017, 126, 93-103.	2.2	47

#	Article	IF	CITATIONS
37	Protein Phosphatase 1 inactivates Mps1 to ensure efficient Spindle Assembly Checkpoint silencing. ELife, 2017, 6, .	6.0	46
38	Drosophila Polo regulates the spindle assembly checkpoint through Mps1-dependent BubR1 phosphorylation. EMBO Journal, 2013, 32, 1761-1777.	7.8	44
39	Microtubule Cytoskeleton Remodeling by Acentriolar Microtubule-organizing Centers at the Entry and Exit from Mitosis in Drosophila Somatic Cells. Molecular Biology of the Cell, 2009, 20, 2796-2808.	2.1	39
40	The perpetual movements of anaphase. Cellular and Molecular Life Sciences, 2010, 67, 2251-2269.	5.4	39
41	The Tubulin Code in Mitosis and Cancer. Cells, 2020, 9, 2356.	4.1	39
42	Spatiotemporal control of mitotic exit during anaphase by an aurora B-Cdk1 crosstalk. ELife, 2019, 8, .	6.0	39
43	Dissecting mitosis by RNAi inDrosophila tissue culture cells. Biological Procedures Online, 2003, 5, 153-161.	2.9	37
44	Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant. Chromosome Research, 2013, 21, 101-106.	2.2	37
45	Polar Ejection Forces Promote the Conversion from Lateral to End-on Kinetochore-Microtubule Attachments on Mono-oriented Chromosomes. Cell Reports, 2015, 13, 460-468.	6.4	36
46	The Microtubule Plus-End Tracking Protein CLASP2 Is Required for Hematopoiesis and Hematopoietic Stem Cell Maintenance. Cell Reports, 2012, 2, 781-788.	6.4	35
47	Robust gap repair in the contractile ring ensures timely completion of cytokinesis. Journal of Cell Biology, 2016, 215, 789-799.	5.2	35
48	A Regulatory Switch Alters Chromosome Motions at the Metaphase-to-Anaphase Transition. Cell Reports, 2016, 17, 1728-1738.	6.4	34
49	An anaphase surveillance mechanism prevents micronuclei formation from frequent chromosome segregation errors. Cell Reports, 2021, 37, 109783.	6.4	34
50	Chromokinesins. Current Biology, 2018, 28, R1131-R1135.	3.9	33
51	Maturation of the kinetochore-microtubule interface and the meaning of metaphase. Chromosome Research, 2012, 20, 563-577.	2.2	32
52	Modulation of Golgiâ€associated microtubule nucleation throughout the cell cycle. Cytoskeleton, 2013, 70, 32-43.	2.0	32
53	The dynamic spindle matrix. Current Opinion in Cell Biology, 2014, 28, 1-7.	5.4	32
54	Improved kymography tools and its applications to mitosis. Methods, 2010, 51, 214-219.	3.8	31

#	Article	IF	CITATIONS
55	A chromosome separation checkpoint. BioEssays, 2015, 37, 257-266.	2.5	30
56	α-Tubulin detyrosination impairs mitotic error correction by suppressing MCAK centromeric activity. Journal of Cell Biology, 2020, 219, .	5.2	30
57	Coherent-hybrid STED: high contrast sub-diffraction imaging using a bi-vortex depletion beam. Optics Express, 2019, 27, 8092.	3.4	29
58	Kinetochore–microtubule interactions during cell division. Chromosome Research, 2004, 12, 585-597.	2.2	28
59	How Do Kinetochores CLASP Dynamic Microtubules?. Cell Cycle, 2003, 2, 511-514.	2.6	26
60	Chromator is required for proper microtubule spindle formation and mitosis in Drosophila. Developmental Biology, 2009, 334, 253-263.	2.0	26
61	A nuclear-derived proteinaceous matrix embeds the microtubule spindle apparatus during mitosis. Molecular Biology of the Cell, 2012, 23, 3532-3541.	2.1	26
62	Mitch – a rapidly evolving component of the Ndc80 kinetochore complex required for correct chromosome segregation in <i>Drosophila</i> . Journal of Cell Science, 2007, 120, 3522-3533.	2.0	25
63	Imidazole-grafted chitosan-mediated gene delivery: <i>in vitro</i> study on transfection, intracellular trafficking and degradation. Nanomedicine, 2011, 6, 1499-1512.	3.3	25
64	Establishment and mitotic characterization of new Drosophila acentriolar cell lines from DSas-4 mutant. Biology Open, 2013, 2, 314-323.	1.2	24
65	Dissecting the role of the tubulin code in mitosis. Methods in Cell Biology, 2018, 144, 33-74.	1.1	23
66	Centrosome–nuclear axis repositioning drives the assembly of a bipolar spindle scaffold to ensure mitotic fidelity. Molecular Biology of the Cell, 2020, 31, 1675-1690.	2.1	23
67	Dynein and Mast/Orbit/CLASP have antagonistic roles in regulating kinetochore-microtubule plus-end dynamics. Journal of Cell Science, 2009, 122, 2543-2553.	2.0	22
68	Microtubule Plus-End Tracking Proteins and Their Roles in Cell Division. International Review of Cell and Molecular Biology, 2014, 309, 59-140.	3.2	22
69	Acto-myosin force organization modulates centriole separation and PLK4 recruitment to ensure centriole fidelity. Nature Communications, 2019, 10, 52.	12.8	22
70	The tumour suppressor DLC2 ensures mitotic fidelity by coordinating spindle positioning and cell–cell adhesion. Nature Communications, 2014, 5, 5826.	12.8	20
71	CLASP2 binding to curved microtubule tips promotes flux and stabilizes kinetochore attachments. Journal of Cell Biology, 2020, 219, jcb.201905080.	5.2	20
72	The equatorial position of the metaphase plate ensures symmetric cell divisions. ELife, 2015, 4, .	6.0	19

#	Article	IF	CITATIONS
73	Dissecting Mitosis with Laser Microsurgery and RNAi in Drosophila Cells. Methods in Molecular Biology, 2009, 545, 145-164.	0.9	18
74	Mitotic progression, arrest, exit or death relies on centromere structural integrity, rather than de novo transcription. ELife, 2018, 7, .	6.0	18
75	Dynein prevents erroneous kinetochore-microtubule attachments in mitosis. Cell Cycle, 2015, 14, 3356-3361.	2.6	17
76	Augmin-dependent microtubule self-organization drives kinetochore fiber maturation in mammals. Cell Reports, 2022, 39, 110610.	6.4	14
77	Drosophila S2 Cells as a Model System to Investigate Mitotic Spindle Dynamics, Architecture, and Function. Methods in Cell Biology, 2010, 97, 243-257.	1.1	12
78	Closing the tubulin detyrosination cycle. Science, 2017, 358, 1381-1382.	12.6	12
79	Prometaphase. Seminars in Cell and Developmental Biology, 2021, 117, 52-61.	5.0	12
80	Measurement of Microtubule Half-Life and Poleward Flux in the Mitotic Spindle by Photoactivation of Fluorescent Tubulin. Methods in Molecular Biology, 2020, 2101, 235-246.	0.9	11
81	Reed-Sternberg Cells Form by Abscission Failure in the Presence of Functional Aurora B Kinase. PLoS ONE, 2015, 10, e0124629.	2.5	11
82	Prevention and Correction Mechanisms behind Anaphase Synchrony: Implications for the Genesis of Aneuploidy. Cytogenetic and Genome Research, 2011, 133, 243-253.	1.1	9
83	Plk1 puts a (Has)pin on the mitotic histone code. EMBO Reports, 2014, 15, 203-204.	4.5	9
84	N-terminus-modified Hec1 suppresses tumour growth by interfering with kinetochore–microtubule dynamics. Oncogene, 2015, 34, 3325-3335.	5.9	9
85	No chromosome left behind: The importance of metaphase alignment for mitotic fidelity. Journal of Cell Biology, 2019, 218, 1086-1088.	5.2	9
86	Fluorescent Speckle Microscopy in Cultured Cells. Methods in Enzymology, 2012, 504, 147-161.	1.0	6
87	Motor-Dependent and -Independent Roles of CENP-E at Kinetochores: The Cautionary Tale of UA62784. Chemistry and Biology, 2011, 18, 679-680.	6.0	5
88	Selective tracking of template DNA strands after induction of mitosis with unreplicated genomes (MUGs) in Drosophila S2 cells. Chromosome Research, 2013, 21, 329-337.	2.2	5
89	Conformational Mechanism for the Stability of Microtubule-Kinetochore Attachments. Biophysical Journal, 2014, 107, 289-300.	0.5	5
90	Inducible fluorescent speckle microscopy. Journal of Cell Biology, 2016, 212, 245-255.	5.2	4

#	Article	IF	CITATIONS
91	Cracking the (tubulin) code of mitosis. Oncotarget, 2015, 6, 19356-19357.	1.8	4
92	Functional Dissection of Mitosis Using Immortalized Fibroblasts from the Indian Muntjac, a Placental Mammal with Only Three Chromosomes. Methods in Molecular Biology, 2020, 2101, 247-266.	0.9	3
93	Mitosis: wisdom, knowledge, and information. Cellular and Molecular Life Sciences, 2010, 67, 2141-2143.	5.4	2
94	Spatial control of the anaphase-telophase transition. Cell Cycle, 2014, 13, 2985-2986.	2.6	2
95	Cell Division: NuMA Bears the Load in the Spindle. Current Biology, 2017, 27, R765-R767.	3.9	2
96	Aurora Mitochondrialis Drives Fission during Mitosis. Developmental Cell, 2011, 21, 387-388.	7.0	1
97	Unbiased about chromosome segregation: give me a mechanism and I will make you "immortalâ€ . Chromosome Research, 2013, 21, 189-191.	2.2	1
98	Membrane-based mechanisms of mitotic spindle assembly. Communicative and Integrative Biology, 2015, 8, e1112473.	1.4	1
99	Actin divides to conquer. Science, 2017, 357, 756-757.	12.6	1
100	SOGA1 and SOGA2/MTCL1 are CLASP-interacting proteins required for faithful chromosome segregation in human cells. Chromosome Research, 2021, 29, 159-173.	2.2	1
101	Chromosomal instability: Stretching the role ofÂcheckpoint silencing. Current Biology, 2021, 31, R386-R389.	3.9	1
102	Mitosis: Kinetochores determined against random search-and-capture. Current Biology, 2022, 32, R231-R234.	3.9	1
103	Helder Maiato: Hot (+)TIPs on mitosis. Journal of Cell Biology, 2013, 202, 722-723.	5.2	0
104	Miguel Mota (1922–2016)—the kinetochore engine(er). Chromosome Research, 2016, 24, 281-283.	2.2	0
105	Let there be light. Nature Chemical Biology, 2017, 13, 1058-1059.	8.0	0
106	Helder Maiato. Current Biology, 2019, 29, R1165-R1168.	3.9	0
107	Mitosis under the macroscope. Seminars in Cell and Developmental Biology, 2021, 117, 1-5.	5.0	0