David M Oliver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5363267/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial hitchhikers on marine plastic debris: Human exposure risks at bathing waters and beach environments. Marine Environmental Research, 2016, 118, 10-19.	1.1	259
2	Modeling fate and transport of fecally-derived microorganisms at the watershed scale: State of the science and future opportunities. Water Research, 2016, 100, 38-56.	5.3	114
3	COVID-19: The environmental implications of shedding SARS-CoV-2 in human faeces. Environment International, 2020, 140, 105790.	4.8	89
4	Developments in water quality monitoring and management in large river catchments using the Danube River as an example. Environmental Science and Policy, 2016, 64, 141-154.	2.4	86
5	Preferential Attachment of Escherichia coli to Different Particle Size Fractions of an Agricultural Grassland Soil. Water, Air, and Soil Pollution, 2007, 185, 369-375.	1.1	81
6	Colonisation of plastic pellets (nurdles) by E. coli at public bathing beaches. Marine Pollution Bulletin, 2019, 139, 376-380.	2.3	81
7	Can macrophyte harvesting from eutrophic water close the loop on nutrient loss from agricultural land?. Journal of Environmental Management, 2015, 152, 210-217.	3.8	79
8	Valuing local knowledge as a source of expert data: Farmer engagement and the design of decision support systems. Environmental Modelling and Software, 2012, 36, 76-85.	1.9	77
9	Land use interacts with changes in catchment hydrology to generate chronic nitrate pollution in karst waters and strong seasonality in excess nitrate export. Science of the Total Environment, 2019, 696, 134062.	3.9	67
10	Transfer of Escherichia coli to Water from Drained and Undrained Grassland after Grazing. Journal of Environmental Quality, 2005, 34, 918-925.	1.0	66
11	Rainfall and conduit drainage combine to accelerate nitrate loss from a karst agroecosystem: Insights from stable isotope tracing and high-frequency nitrate sensing. Water Research, 2020, 186, 116388.	5.3	66
12	Assessing the Potential for Pathogen Transfer from Grassland Soils to Surface Waters. Advances in Agronomy, 2005, 85, 125-180.	2.4	62
13	Freshwater blue space and population health: An emerging research agenda. Science of the Total Environment, 2020, 737, 140196.	3.9	62
14	Differential E. coli Die-Off Patterns Associated with Agricultural Matrices. Environmental Science & Technology, 2006, 40, 5710-5716.	4.6	61
15	Seaweeds and plastic debris can influence the survival of faecal indicator organisms in beach environments. Marine Pollution Bulletin, 2014, 84, 201-207.	2.3	56
16	Predicting microbial water quality with models: Over-arching questions for managing risk in agricultural catchments. Science of the Total Environment, 2016, 544, 39-47.	3.9	54
17	How does smallholder farming practice and environmental awareness vary across village communities in the karst terrain of southwest China?. Agriculture, Ecosystems and Environment, 2020, 288, 106715.	2.5	44
18	Engaging with the water sector for public health benefits: waterborne pathogens and diseases in developed countries. Bulletin of the World Health Organization, 2010, 88, 873-875.	1.5	42

DAVID M OLIVER

#	Article	IF	CITATIONS
19	Quantifying stakeholder understanding of an ecosystem service trade-off. Science of the Total Environment, 2019, 651, 2524-2534.	3.9	42
20	Neighbourhood blue space and mental health: A nationwide ecological study of antidepressant medication prescribed to older adults. Landscape and Urban Planning, 2021, 214, 104132.	3.4	42
21	Re-shaping models of E. coli population dynamics in livestock faeces: Increased bacterial risk to humans?. Environment International, 2010, 36, 1-7.	4.8	41
22	Scale appropriate modelling of diffuse microbial pollution from agriculture. Progress in Physical Geography, 2009, 33, 358-377.	1.4	40
23	Bathing Water Quality Monitoring Practices in Europe and the United States. International Journal of Environmental Research and Public Health, 2021, 18, 5513.	1.2	39
24	Survival of human enteric and respiratory viruses on plastics in soil, freshwater, and marine environments. Environmental Research, 2021, 199, 111367.	3.7	39
25	Establishing relative release kinetics of faecal indicator organisms from different faecal matrices. Letters in Applied Microbiology, 2009, 49, 124-130.	1.0	37
26	Management of livestock and their manure to reduce the risk of microbial transfers to water – the case for an interdisciplinary approach. Trends in Food Science and Technology, 2008, 19, 240-247.	7.8	36
27	Quantifying the importance of plastic pollution for the dissemination of human pathogens: The challenges of choosing an appropriate †control' material. Science of the Total Environment, 2022, 810, 152292.	3.9	35
28	How can we improve understanding of faecal indicator dynamics in karst systems under changing climatic, population, and land use stressors? – Research opportunities in SW China. Science of the Total Environment, 2019, 646, 438-447.	3.9	34
29	A cross-disciplinary toolkit to assess the risk of faecal indicator loss from grassland farm systems to surface waters. Agriculture, Ecosystems and Environment, 2009, 129, 401-412.	2.5	32
30	Mitigation and Current Management Attempts to Limit Pathogen Survival and Movement Within Farmed Grassland. Advances in Agronomy, 2007, , 95-152.	2.4	31
31	Rainfall-driven E.Âcoli transfer to the stream-conduit network observed through increasing spatial scales in mixed land-use paddy farming karst terrain. Water Research X, 2019, 5, 100038.	2.8	31
32	Coupled hydrological and biogeochemical modelling of nitrogen transport in the karst critical zone. Science of the Total Environment, 2020, 732, 138902.	3.9	31
33	Unruly pathogens: eliciting values for environmental risk in the context of heterogeneous expert knowledge. Environmental Science and Policy, 2009, 12, 281-296.	2.4	29
34	Development and testing of a risk indexing framework to determine field-scale critical source areas of faecal bacteria on grassland. Environmental Modelling and Software, 2010, 25, 503-512.	1.9	29
35	Opportunities and limitations of molecular methods for quantifying microbial compliance parameters in EU bathing waters. Environment International, 2014, 64, 124-128.	4.8	28
36	Seasonal persistence of faecal indicator organisms in soil following dairy slurry application to land by surface broadcasting and shallow injection. Journal of Environmental Management, 2016, 183, 325-332.	3.8	28

DAVID M OLIVER

#	Article	IF	CITATIONS
37	Uncertainties in the governance of animal disease: an interdisciplinary framework for analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2023-2034.	1.8	25
38	Design of a decision support tool for visualising E. coli risk on agricultural land using a stakeholder-driven approach. Land Use Policy, 2017, 66, 227-234.	2.5	25
39	Managing Multiple Catchment Demands for Sustainable Water Use and Ecosystem Service Provision. Water (Switzerland), 2017, 9, 677.	1.2	23
40	Binding, recovery, and infectiousness of enveloped and non-enveloped viruses associated with plastic pollution in surface water. Environmental Pollution, 2022, 308, 119594.	3.7	23
41	Catchments, sub-catchments and private spaces: Scale and process in managing microbial pollution from source to sea. Environmental Science and Policy, 2011, 14, 315-326.	2.4	22
42	Chronic urban hotspots and agricultural drainage drive microbial pollution of karst water resources in rural developing regions. Science of the Total Environment, 2020, 744, 140898.	3.9	22
43	Blue space exposure, health and well-being: Does freshwater type matter?. Landscape and Urban Planning, 2022, 224, 104446.	3.4	22
44	Phytoremediation Using Aquatic Plants. Concepts and Strategies in Plant Sciences, 2020, , 205-260.	0.6	21
45	Quantitative PCR Profiling of <i>Escherichia coli</i> in Livestock Feces Reveals Increased Population Resilience Relative to Culturable Counts under Temperature Extremes. Environmental Science & Technology, 2016, 50, 9497-9505.	4.6	20
46	Sewage-associated plastic waste washed up on beaches can act as a reservoir for faecal bacteria, potential human pathogens, and genes for antimicrobial resistance. Marine Pollution Bulletin, 2022, 180, 113766.	2.3	20
47	Knowledge management across the environment-policy interface in China: What knowledge is exchanged, why, and how is this undertaken?. Environmental Science and Policy, 2019, 92, 66-75.	2.4	17
48	Resolving conflicts in public health protection and ecosystem service provision at designated bathing waters. Journal of Environmental Management, 2015, 161, 237-242.	3.8	15
49	Determining E. coli burden on pasture in a headwater catchment: Combined field and modelling approach. Environment International, 2012, 43, 6-12.	4.8	14
50	Power, danger, and secrecy—A socio-cultural examination of menstrual waste management in urban Malawi. PLoS ONE, 2020, 15, e0235339.	1.1	14
51	The microbial safety of seaweed as a feed component for black soldier fly (Hermetia illucens) larvae. Food Microbiology, 2020, 91, 103535.	2.1	14
52	Effects of seasonal meteorological variables on E. coli persistence in livestock faeces and implications for environmental and human health. Scientific Reports, 2016, 6, 37101.	1.6	13
53	Policy, practice and decision making for zoonotic disease management: Water and Cryptosporidium. Environment International, 2012, 40, 70-78.	4.8	12
54	Estimating phosphorus delivery with its mitigation measures from soil to stream using fuzzy rules. Soil Use and Management, 2013, 29, 187-198.	2.6	12

DAVID M OLIVER

#	Article	IF	CITATIONS
55	Employing the citizens' jury technique to elicit reasoned public judgments about environmental risk: insights from an inquiry into the governance of microbial water pollution. Journal of Environmental Planning and Management, 2014, 57, 233-253.	2.4	12
56	Impact of low intensity summer rainfall on E. coli-discharge event dynamics with reference to sample acquisition and storage. Environmental Monitoring and Assessment, 2015, 187, 426.	1.3	12
57	Predicting diffuse microbial pollution risk across catchments: The performance of SCIMAP and recommendations for future development. Science of the Total Environment, 2017, 609, 456-465.	3.9	12
58	A catchment-scale model to predict spatial and temporal burden of E. coli on pasture from grazing livestock. Science of the Total Environment, 2018, 616-617, 678-687.	3.9	12
59	The disparity between regulatory measurements of E. coli in public bathing waters and the public expectation of bathing water quality. Journal of Environmental Management, 2019, 232, 868-874.	3.8	12
60	Evaluating the structure characteristics of epikarst at a typical peak cluster depression in Guizhou plateau area using ground penetrating radar attributes. Geomorphology, 2020, 364, 107015.	1.1	12
61	Molecular tools for bathing water assessment in Europe: Balancing social science research with a rapidly developing environmental science evidence-base. Ambio, 2016, 45, 52-62.	2.8	11
62	From one pandemic to another: emerging lessons from COVID-19 for tackling physical inactivity in cities. Cities and Health, 2021, 5, S181-S184.	1.6	11
63	Valuing inland blue space: A contingent valuation study of two large freshwater lakes. Science of the Total Environment, 2020, 715, 136921.	3.9	11
64	A â€~culture' change in catchment microbiology?. Hydrological Processes, 2010, 24, 2973-2976.	1.1	10
65	Spatio-temporal characteristics and determinants of anthropogenic nitrogen and phosphorus inputs in an ecologically fragile karst basin: Environmental responses and management strategies. Ecological Indicators, 2021, 133, 108453.	2.6	10
66	Seasonal and within-herd variability of <i>E.Âcoli</i> concentrations in fresh dairy faeces. Letters in Applied Microbiology, 2014, 59, 86-92.	1.0	9
67	High resolution characterisation of E. coli proliferation profiles in livestock faeces. Waste Management, 2019, 87, 537-545.	3.7	8
68	The seaweed fly (Coelopidae) can facilitate environmental survival and transmission of E. coli O157 at sandy beaches. Journal of Environmental Management, 2018, 223, 275-285.	3.8	7
69	Freshwater Wild Swimming, Health and Well-Being: Understanding the Importance of Place and Risk. Sustainability, 2022, 14, 6364.	1.6	7
70	Impact of Freeze–Thaw Cycles on Die-Off of E. coli and Intestinal Enterococci in Deer and Dairy Faeces: Implications for Landscape Contamination of Watercourses. International Journal of Environmental Research and Public Health, 2020, 17, 6999.	1.2	6
71	Catchment-Scale Participatory Mapping Identifies Stakeholder Perceptions of Land and Water Management Conflicts. Land, 2022, 11, 300.	1.2	4
72	Resource recovery and freshwater ecosystem restoration — Prospecting for phytoremediation potential in wild macrophyte stands. Resources, Environment and Sustainability, 2022, 7, 100050.	2.9	3

#	Article	IF	CITATIONS
73	Evaluating a Rapid Method to Determine Faecal Burden on Pasture from Grazing Cattle. Water, Air, and Soil Pollution, 2012, 223, 6051-6058.	1.1	1
74	Blood flows: mapping journeys of menstrual waste in Blantyre, Malawi. Cities and Health, 2022, 6, 738-751.	1.6	1
75	Pathogen and Nutrient Transfer Through and Across Agricultural Soils. , 2013, , 403-439.		Ο