Juan Ortin

List of Publications by Citations

Source: https://exaly.com/author-pdf/5363224/juan-ortin-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68
papers

5,413
citations

8.7
ext. papers

5,809
ext. citations

38
h-index

8.7
avg, IF

5.19
L-index

#	Paper	IF	Citations
68	The multifunctional NS1 protein of influenza A viruses. <i>Journal of General Virology</i> , 2008 , 89, 2359-2376	4.9	787
67	The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevancea review. <i>Gene</i> , 1985 , 40, 1-8	3.8	392
66	The structural basis for cap binding by influenza virus polymerase subunit PB2. <i>Nature Structural and Molecular Biology</i> , 2008 , 15, 500-6	17.6	380
65	Lack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret model. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 12121-6	11.5	275
64	Multiple genetic variants arise in the course of replication of foot-and-mouth disease virus in cell culture. <i>Virology</i> , 1983 , 128, 310-8	3.6	241
63	The structure of native influenza virion ribonucleoproteins. <i>Science</i> , 2012 , 338, 1634-7	33.3	213
62	Nucleotide sequence heterogeneity of the RNA from a natural population of foot-and-mouth-disease virus. <i>Gene</i> , 1980 , 11, 333-46	3.8	182
61	Expression in mammalian cells of a gene from Streptomyces alboniger conferring puromycin resistance. <i>Nucleic Acids Research</i> , 1986 , 14, 4617-24	20.1	172
60	The structure of a biologically active influenza virus ribonucleoprotein complex. <i>PLoS Pathogens</i> , 2009 , 5, e1000491	7.6	153
59	Efficient transformation of mammalian cells with constructs containing a puromycin-resistance marker. <i>Gene</i> , 1988 , 62, 121-6	3.8	138
58	PABP1 and eIF4GI associate with influenza virus NS1 protein in viral mRNA translation initiation complexes. <i>Journal of General Virology</i> , 2003 , 84, 3263-3274	4.9	135
57	The composition of Staufen-containing RNA granules from human cells indicates their role in the regulated transport and translation of messenger RNAs. <i>Nucleic Acids Research</i> , 2004 , 32, 2411-20	20.1	118
56	Analysis of the interaction of influenza virus polymerase complex with human cell factors. <i>Proteomics</i> , 2008 , 8, 2077-88	4.8	111
55	Establishment of cell lines persistently infected with foot-and-mouth disease virus. <i>Virology</i> , 1985 , 145, 24-35	3.6	110
54	Genetic trans-complementation establishes a new model for influenza virus RNA transcription and replication. <i>PLoS Pathogens</i> , 2009 , 5, e1000462	7.6	109
53	3D structure of the influenza virus polymerase complex: localization of subunit domains. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 308-13	11.5	107
52	Genetic variability of Hong Kong (H3N2) influenza viruses: spontaneous mutations and their location in the viral genome. <i>Gene</i> , 1980 , 11, 319-31	3.8	94

51	DNA-protein complex in circular DNA from phage phi-29. <i>Nature: New Biology</i> , 1971 , 234, 275-7		94
50	Defective RNA replication and late gene expression in temperature-sensitive influenza viruses expressing deleted forms of the NS1 protein. <i>Journal of Virology</i> , 2004 , 78, 3880-8	6.6	89
49	Three-dimensional reconstruction of a recombinant influenza virus ribonucleoprotein particle. <i>EMBO Reports</i> , 2001 , 2, 313-7	6.5	78
48	The host-dependent interaction of alpha-importins with influenza PB2 polymerase subunit is required for virus RNA replication. <i>PLoS ONE</i> , 2008 , 3, e3904	3.7	77
47	Three-dimensional model for the isolated recombinant influenza virus polymerase heterotrimer. <i>Nucleic Acids Research</i> , 2007 , 35, 3774-83	20.1	67
46	The RNA synthesis machinery of negative-stranded RNA viruses. <i>Virology</i> , 2015 , 479-480, 532-44	3.6	65
45	The splicing factor proline-glutamine rich (SFPQ/PSF) is involved in influenza virus transcription. <i>PLoS Pathogens</i> , 2011 , 7, e1002397	7.6	58
44	Evolution of the influenza virus neuraminidase gene during drift of the N2 subtype. <i>Virology</i> , 1983 , 130, 539-45	3.6	56
43	Threonine 157 of influenza virus PA polymerase subunit modulates RNA replication in infectious viruses. <i>Journal of Virology</i> , 2003 , 77, 6007-13	6.6	53
42	Molecular cloning and sequencing of influenza virus A/Victoria/3/75 polymerase genes: sequence evolution and prediction of possible functional domains. <i>Virus Research</i> , 1989 , 13, 143-55	6.4	53
41	Nuclear transport of influenza virus polymerase PA protein. Virus Research, 1992, 24, 65-75	6.4	51
40	Structure and function of RNA replication. <i>Annual Review of Microbiology</i> , 2006 , 60, 305-26	17.5	50
39	pac gene as efficient dominant marker and reporter gene in mammalian cells. <i>Methods in Enzymology</i> , 1992 , 216, 376-85	1.7	47
38	Evolution of the nucleotide sequence of influenza virus RNA segment 7 during drift of the H3N2 subtype. <i>Gene</i> , 1983 , 23, 233-9	3.8	46
37	Molecular cloning of cDNA from foot-and-mouth disease virus C1-Santa Pau (C-S8). Sequence of protein-VP1-coding segment. <i>Gene</i> , 1983 , 23, 185-94	3.8	44
36	Human Staufen1 protein interacts with influenza virus ribonucleoproteins and is required for efficient virus multiplication. <i>Journal of Virology</i> , 2010 , 84, 7603-12	6.6	40
35	Oligomerization of the influenza virus polymerase complex in vivo. <i>Journal of General Virology</i> , 2008 , 89, 520-524	4.9	40
34	An unbiased genetic screen reveals the polygenic nature of the influenza virus anti-interferon response. <i>Journal of Virology</i> , 2014 , 88, 4632-46	6.6	39

33	Mutations in the N-terminal region of influenza virus PB2 protein affect virus RNA replication but not transcription. <i>Journal of Virology</i> , 2003 , 77, 5098-108	6.6	39
32	Attenuation and immunogenicity in mice of temperature-sensitive influenza viruses expressing truncated NS1 proteins. <i>Journal of General Virology</i> , 2005 , 86, 2817-2821	4.9	38
31	Genetic analysis of influenza virus NS1 gene: a temperature-sensitive mutant shows defective formation of virus particles. <i>Journal of Virology</i> , 2005 , 79, 15246-57	6.6	38
30	The synthesis of influenza virus negative-strand RNA takes place in insoluble complexes present in the nuclear matrix fraction. <i>Virus Research</i> , 1990 , 16, 325-37	6.4	37
29	Mutation analysis of a recombinant NS replicon shows that influenza virus NS1 protein blocks the splicing and nucleo-cytoplasmic transport of its own viral mRNA. <i>Nucleic Acids Research</i> , 2007 , 35, 4573-	82 ^{0.1}	36
28	Sequence of the viral replicase gene from foot-and-mouth disease virus C1-Santa Pau (C-S8). <i>Gene</i> , 1985 , 35, 55-61	3.8	36
27	Structural and functional characterization of an influenza virus RNA polymerase-genomic RNA complex. <i>Journal of Virology</i> , 2010 , 84, 10477-87	6.6	35
26	The Cellular Factor NXP2/MORC3 Is a Positive Regulator of Influenza Virus Multiplication. <i>Journal of Virology</i> , 2015 , 89, 10023-30	6.6	29
25	Regulation of influenza virus infection by long non-coding RNAs. Virus Research, 2016, 212, 78-84	6.4	26
24	Functional signature for the recognition of specific target mRNAs by human Staufen1 protein. <i>Nucleic Acids Research</i> , 2014 , 42, 4516-26	20.1	26
23	Lipid-Based Bio-Nanohybrids for Functional Stabilisation of Influenza Vaccines. <i>European Journal of Inorganic Chemistry</i> , 2012 , 2012, 5186-5191	2.3	26
22	Development of an HTS assay for the search of anti-influenza agents targeting the interaction of viral RNA with the NS1 protein. <i>Journal of Biomolecular Screening</i> , 2008 , 13, 581-90		24
21	Oriented synthesis and cloning of influenza virus nucleoprotein cDNA that leads to its expression in mammalian cells. <i>Virus Research</i> , 1985 , 4, 69-82	6.4	24
20	Biomimetic Architectures for the Impedimetric Discrimination of Influenza Virus Phenotypes. <i>Advanced Functional Materials</i> , 2013 , 23, 254-262	15.6	23
19	Influenza virus transcription and replication. Advances in Virus Research, 2013, 87, 113-37	10.7	21
18	Characterization in vitro and in vivo of a pandemic H1N1 influenza virus from a fatal case. <i>PLoS ONE</i> , 2013 , 8, e53515	3.7	20
17	Cleavage of p220 by purified poliovirus 2A(pro) in cell-free systems: effects on translation of capped and uncapped mRNAs. <i>Biochemistry</i> , 1997 , 36, 7802-9	3.2	20
16	A primer vector system that allows temperature dependent gene amplification and expression in mammalian cells: regulation of the influenza virus NS1 gene expression. <i>Nucleic Acids Research</i> , 1985, 13, 7959-77	20.1	19

LIST OF PUBLICATIONS

15	Structural insights into influenza A virus ribonucleoproteins reveal a processive helical track as transcription mechanism. <i>Nature Microbiology</i> , 2020 , 5, 727-734	26.6	18
14	Apoptosis, Toll-like, RIG-I-like and NOD-like Receptors Are Pathways Jointly Induced by Diverse Respiratory Bacterial and Viral Pathogens. <i>Frontiers in Microbiology</i> , 2017 , 8, 276	5.7	16
13	Plasmid vectors based on Tn10 DNA: gene expression regulated by tetracycline. <i>Plasmid</i> , 1984 , 12, 103	-1903	16
12	Chemical Genomics Identifies the PERK-Mediated Unfolded Protein Stress Response as a Cellular Target for Influenza Virus Inhibition. <i>MBio</i> , 2016 , 7, e00085-16	7.8	13
11	Human Staufen1 associates to miRNAs involved in neuronal cell differentiation and is required for correct dendritic formation. <i>PLoS ONE</i> , 2014 , 9, e113704	3.7	12
10	Kidney histopathological findings in fatal pandemic 2009 influenza A (H1N1). <i>Intensive Care Medicine</i> , 2011 , 37, 880-1	14.5	10
9	Transcription of the genome of adenovirus type 12. Viral mRNA in productively infected KB cells. <i>FEBS Journal</i> , 1975 , 58, 283-90		9
8	[21] Systems to express recombinant RNA molecules by the influenza A virus polymerase in vivo. <i>Methods in Molecular Genetics</i> , 1995 , 7, 329-342		8
7	Regulation of gene amplification and expression in cells that constitutively express a temperature sensitive SV40 T-antigen. <i>Nucleic Acids Research</i> , 1985 , 13, 7913-27	20.1	8
6	hCLE/C14orf166, a cellular protein required for viral replication, is incorporated into influenza virus particles. <i>Scientific Reports</i> , 2016 , 6, 20744	4.9	7
5	Characterization of an enhanced antigenic change in the pandemic 2009 H1N1 influenza virus haemagglutinin. <i>Journal of General Virology</i> , 2014 , 95, 1033-1042	4.9	6
4	Permanent cell lines established from ts-COS cells that regulate by temperature the amplification and expression of cloned genes. <i>Nucleic Acids Research</i> , 1987 , 15, 6117-29	20.1	6
3	Generation of replication-proficient influenza virus NS1 point mutants with interferon-hyperinducer phenotype. <i>PLoS ONE</i> , 2014 , 9, e98668	3.7	2
2	Viral cell biology: Influenza raids the splicing store. <i>Nature Microbiology</i> , 2016 , 1, 16100	26.6	1
1	Unraveling the replication machine from negative-stranded RNA viruses. <i>Structure</i> , 2003 , 11, 1194-6	5.2	