
Ze Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5362911/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highâ€Entropy Spinel Oxide Nanofibers as Catalytic Sulfur Hosts Promise the High Gravimetric and Volumetric Capacities for Lithium–Sulfur Batteries. Energy and Environmental Materials, 2022, 5, 645-654.	7.3	69
2	Near-infrared responsive sulfur vacancy-rich CuS nanosheets for efficient antibacterial activity via synergistic photothermal and photodynamic pathways. Journal of Colloid and Interface Science, 2022, 608, 2896-2906.	5.0	43
3	High edge-nitrogen-doped porous carbon nanosheets with rapid pseudocapacitive mechanism for boosted potassium-ion storage. Carbon, 2022, 187, 302-309.	5.4	18
4	Recent advances in biological applications of nanomaterials through defect engineering. Science of the Total Environment, 2022, 816, 151647.	3.9	4
5	Enhanced chemisorption and catalytic conversion of polysulfides via CoFe@NC nanocubes modified separator for superior Li–S batteries. Chemical Engineering Journal, 2022, 433, 133792.	6.6	26
6	Design, synthesis, and insecticidal evaluation of novel anthranilic diamides of <scp><i>N</i>â€pyridylpyrazole</scp> derivatives containing <scp>3â€ŧhioethers</scp> . Journal of Heterocyclic Chemistry, 2022, 59, 820-831.	1.4	3
7	Design, synthesis and biological activity of diamide compounds based on 3â€substituent of the pyrazole ring ^{â€} . Pest Management Science, 2022, 78, 2022-2033.	1.7	18
8	Electronic Structure Modulation of Ag ₂ S by Vacancy Engineering for Efficient Bacterial Infection. Small, 2022, 18, e2107807.	5.2	6
9	In Situ Constructing a Stable Solid Electrolyte Interface by Multifunctional Electrolyte Additive to Stabilize Lithium Metal Anodes for Li–S Batteries. ACS Applied Materials & Interfaces, 2022, 14, 17959-17967.	4.0	14
10	Efficient photothermal and photodynamic synergistic antibacterial therapy of Cu7S4 nanosheets regulated by facet engineering. Journal of Hazardous Materials, 2022, 432, 128662.	6.5	25
11	A dual-regulation strategy of B/N codoped CNT-encapsulated Ni nanoparticles as a catalytic host and separator coating promises high-performance Li-S batteries. Science China Technological Sciences, 2022, 65, 1567-1577.	2.0	2
12	Poly(vinylidene fluoride) Modified Commercial Paper as a Separator with Enhanced Thermal Stability and Electrolyte Affinity for Lithiumâ€ion Battery. Energy and Environmental Materials, 2021, 4, 664-670.	7.3	25
13	Needle-like cobalt phosphide arrays grown on carbon fiber cloth as a binder-free electrode with enhanced lithium storage performance. Chinese Chemical Letters, 2021, 32, 154-157.	4.8	15
14	Self-templated synthesis of hollow hierarchical porous olive-like carbon toward universal high-performance alkali (Li, Na, K)-ion storage. Carbon, 2021, 174, 317-324.	5.4	30
15	Ultrathin Nanosheet-Assembled Flowerlike NiSe ₂ Catalyst Boosts Sulfur Redox Reaction Kinetics for Li–S Batteries. ACS Applied Energy Materials, 2021, 4, 3431-3438.	2.5	14
16	Highly Stable Lil/Active Graphene Composite Cathodes for Efficient Lithium-Iodine Batteries. Journal of the Electrochemical Society, 2021, 168, 040522.	1.3	5
17	Co-W bimetallic carbides as sulfur host for high-performance lithium–sulfur batteries. Journal of Materials Science: Materials in Electronics, 2021, 32, 16577-16588.	1.1	3
18	Vacancy-Enhanced Photothermal Killing of Bacteria Mediated by Graphene Oxide. ACS Applied Bio Materials, 2021, 4, 5661-5668.	2.3	9

ZE ZHANG

#	Article	IF	CITATIONS
19	Tunable 2D tremella-derived carbon nanosheets with enhanced pseudocapacitance behavior for ultrafast potassium-ion storage. Science China Technological Sciences, 2021, 64, 2047-2056.	2.0	9
20	Less is more: biological effects of NiSe2/rGO nanocomposites with low dose provide new insight for risk assessment. Journal of Hazardous Materials, 2021, 415, 125605.	6.5	5
21	Aramid nanofiber reinforced cellulose paper for high-safety lithium-ion batteries. Cellulose, 2021, 28, 10579-10588.	2.4	7
22	SnS Nanosheets for Rapid and Effective Bacteria Sterilization Under Nearâ€infrared Irradiation. Chemistry - A European Journal, 2021, 27, 15434-15439.	1.7	7
23	Areca-inspired core-shell structured MnO@C composite towards enhanced lithium-ion storage. Carbon, 2021, 184, 706-713.	5.4	19
24	The synergistic effect of enhanced photocatalytic activity and photothermal effect of oxygen-deficient Ni/reduced graphene oxide nanocomposite for rapid disinfection under near-infrared irradiation. Journal of Hazardous Materials, 2021, 419, 126462.	6.5	33
25	Surface-seeding secondary growth for CoO@Co9S8 P-N heterojunction hollow nanocube encapsulated into graphene as superior anode toward lithium ion storage. Chemical Engineering Journal, 2021, 425, 130648.	6.6	37
26	Facile Synthesis of a "Two-in-One―Sulfur Host Featuring Metallic-Cobalt-Embedded N-Doped Carbon Nanotubes for Efficient Lithium-Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 5968-5978.	4.0	52
27	Neurotoxicity of Mn3O4 nanoparticles: Apoptosis and dopaminergic neurons damage pathway. Ecotoxicology and Environmental Safety, 2020, 188, 109909.	2.9	22
28	Vacancy-induced toxicity of CoSe ₂ nanomaterials in rat lung macrophages. Nanotoxicology, 2020, 14, 968-984.	1.6	7
29	Novel agaric-derived olive-like yolk–shell structured MnO@C composites for superior lithium storage. Chemical Communications, 2020, 56, 13201-13204.	2.2	17
30	Recyclable cobalt-molybdenum bimetallic carbide modified separator boosts the polysulfide adsorption-catalysis of lithium sulfur battery. Science China Materials, 2020, 63, 2443-2455.	3.5	69
31	Harmonizing the Electronic Structures on BiOI with Active Oxygen Vacancies toward Facetâ€Đependent Antibacterial Photodynamic Therapy. Advanced Functional Materials, 2020, 30, 2004108.	7.8	56
32	Agaric-assisted synthesis of core-shell MnO@C microcubes as super-high- volumetric-capacity anode for lithium-ion batteries. Carbon, 2020, 162, 36-45.	5.4	43
33	Boosting the polysulfide confinement in B/N–codoped hierarchically porous carbon nanosheets via Lewis acid–base interaction for stable Li–S batteries. Journal of Energy Chemistry, 2020, 51, 90-100.	7.1	38
34	PDA modified commercial paper separator engineering with excellent lithiophilicity and mechanical strength for lithium metal batteries. Journal of Electroanalytical Chemistry, 2020, 868, 114195.	1.9	20
35	Efficient Polysulfide Redox Enabled by Lattice-Distorted Ni ₃ Fe Intermetallic Electrocatalyst-Modified Separator for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 19572-19580.	4.0	72
36	Two for One: A Biomass Strategy for Simultaneous Synthesis of MnO ₂ Microcubes and Porous Carbon Microcubes for High Performance Asymmetric Supercapacitors. ACS Sustainable Chemistry and Engineering, 2020, 8, 6333-6342.	3.2	13

ZE ZHANG

#	Article	IF	CITATIONS
37	Sulfur/nickel ferrite composite as cathode with high-volumetric-capacity for lithium-sulfur battery. Science China Materials, 2019, 62, 74-86.	3.5	86
38	Cobaltâ€Tungsten Bimetallic Carbide Nanoparticles as Efficient Catalytic Material for Highâ€Performance Lithium–Sulfur Batteries. ChemSusChem, 2019, 12, 4866-4873.	3.6	32
39	In-built template synthesis of hierarchical porous carbon microcubes from biomass toward electrochemical energy storage. Carbon, 2019, 155, 1-8.	5.4	48
40	Renewable agaric-based hierarchically porous cocoon-like MnO/Carbon composites enable high-rate Li-ion batteries. Electrochimica Acta, 2019, 322, 134757.	2.6	22
41	A Chemical Blowing Strategy to Fabricate Biomassâ€Derived Carbonâ€Aerogels with Grapheneâ€Like Nanosheet Structures for Highâ€Performance Supercapacitors. ChemSusChem, 2019, 12, 2462-2470.	3.6	53
42	Manganese Monoxide/Biomass-Inherited Porous Carbon Nanostructure Composite Based on the High Water-Absorbent Agaric for Asymmetric Supercapacitor. ACS Sustainable Chemistry and Engineering, 2019, 7, 4284-4294.	3.2	45
43	Rational design of intertwined carbon nanotubes threaded porous CoP@carbon nanocubes as anode with superior lithium storage. Carbon, 2019, 142, 269-277.	5.4	58
44	Chemosensitization effect of cerium oxide nanosheets by suppressing drug detoxification and efflux. Ecotoxicology and Environmental Safety, 2019, 167, 301-308.	2.9	13
45	Moltenâ€Saltâ€Assisted Synthesis of Hierarchical Porous MnO@Biocarbon Composites as Promising Electrode Materials for Supercapacitors and Lithiumâ€Ion Batteries. ChemSusChem, 2019, 12, 283-290.	3.6	42
46	Highly sulfiphilic Ni-Fe bimetallic oxide nanoparticles anchored on carbon nanotubes enable effective immobilization and conversion of polysulfides for stable lithium-sulfur batteries. Carbon, 2019, 142, 32-39.	5.4	78
47	Free-Standing Porous Carbon Nanofiber/Carbon Nanotube Film as Sulfur Immobilizer with High Areal Capacity for Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2018, 10, 8749-8757.	4.0	129
48	Lithiophilic gel polymer electrolyte to stabilize the lithium anode for a quasi-solid-state lithium–sulfur battery. Journal of Materials Chemistry A, 2018, 6, 18627-18634.	5.2	69
49	Multi-channel FeP@C octahedra anchored on reduced graphene oxide nanosheet with efficient performance for lithium-ion batteries. Carbon, 2018, 139, 477-485.	5.4	75
50	Ultrathin and Strong Electrospun Porous Fiber Separator. ACS Applied Energy Materials, 2018, 1, 4794-4803.	2.5	32
51	A Highâ€Efficiency Sulfur/Carbon Composite Based on 3D Graphene Nanosheet@Carbon Nanotube Matrix as Cathode for Lithium–Sulfur Battery. Advanced Energy Materials, 2017, 7, 1602543.	10.2	363
52	Porous Carbon Paper as Interlayer to Stabilize the Lithium Anode for Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2016, 8, 31684-31694.	4.0	83
53	Encapsulating sulfur into a hybrid porous carbon/CNT substrate as a cathode for lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 6827-6834.	5.2	73
54	Cobaltâ€Catalyzed Intermolecular Hydroamination of Unactivated Alkenes Using NFSI as Nitrogen Source. Chinese Journal of Chemistry, 0, , .	2.6	4