
Roberto Lorenzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5362555/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Luminescence mechanisms of defective ZnO nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 16237-16244.	2.8	89
2	Spectro-electrochemical Probing of Intrinsic and Extrinsic Processes in Exciton Recombination in I–III–VI ₂ Nanocrystals. Nano Letters, 2017, 17, 4508-4517.	9.1	60
3	Fully inorganic oxide-in-oxide ultraviolet nanocrystal light emitting devices. Nature Communications, 2012, 3, 690.	12.8	56
4	Size-Dependent Luminescence in HfO ₂ Nanocrystals: Toward White Emission from Intrinsic Surface Defects. Chemistry of Materials, 2016, 28, 3245-3253.	6.7	54
5	Permanent excimer superstructures by supramolecular networking of metal quantum clusters. Science, 2016, 353, 571-575.	12.6	54
6	Native amorphous nanoheterogeneity in gallium germanosilicates as a tool for driving Ga ₂ O ₃ nanocrystal formation in glass for optical devices. Nanoscale, 2013, 5, 299-306.	5.6	41
7	Nickel-assisted growth and selective doping of spinel-like gallium oxide nanocrystals in germano-silicate glasses for infrared broadband light emission. Nanotechnology, 2012, 23, 015708.	2.6	39
8	In-line absorption sensor based on coiled optical microfiber. Applied Physics Letters, 2011, 98, .	3.3	38
9	Light-emitting Ga-oxide nanocrystals in glass: a new paradigm for low-cost and robust UV-to-visible solar-blind converters and UV emitters. Nanoscale, 2014, 6, 1763-1774.	5.6	33
10	Thermochromic Latentâ€Pigmentâ€Based Time–Temperature Indicators for Perishable Goods. Advanced Optical Materials, 2015, 3, 1164-1168.	7.3	33
11	Non-aqueous sol–gel synthesis of hybrid rare-earth-doped γ-Ga ₂ O ₃ nanoparticles with multiple organic–inorganic-ionic light-emission features. Journal of Materials Chemistry C, 2015, 3, 41-45.	5.5	27
12	Efficient 1.53μm erbium light emission in heavily Er-doped titania-modified aluminium tellurite glasses. Journal of Non-Crystalline Solids, 2007, 353, 2150-2156.	3.1	26
13	Waste Face Surgical Mask Transformation into Crude Oil and Nanostructured Electrocatalysts for Fuel Cells and Electrolyzers. ChemSusChem, 2022, 15, .	6.8	26
14	"Quantized―Doping of Individual Colloidal Nanocrystals Using Size-Focused Metal Quantum Clusters. ACS Nano, 2017, 11, 6233-6242.	14.6	21
15	Valorization of the inedible pistachio shells into nanoscale transition metal and nitrogen codoped carbon-based electrocatalysts for hydrogen evolution reaction and oxygen reduction reaction. Materials for Renewable and Sustainable Energy, 2022, 11, 131-141.	3.6	20
16	Surface Characterization of TiO ₂ Polymorphic Nanocrystals through ¹ H-TD-NMR. Langmuir, 2018, 34, 9460-9469.	3.5	19
17	A physico-chemical investigation of highly concentrated potassium acetate solutions towards applications in electrochemistry. Physical Chemistry Chemical Physics, 2021, 23, 1139-1145.	2.8	19
18	High-energy shift of the Urbach ultraviolet absorption from attenuated dynamical disorder in fluorine modified sol-gel silica. Applied Physics Letters, 2007, 91, .	3.3	17

ROBERTO LORENZI

#	Article	IF	CITATIONS
19	Confined diffusion of erbium excitations inSnO2nanoparticles embedded in silica: A time-resolved infrared luminescence study. Physical Review B, 2009, 79, .	3.2	17
20	Electric field induced structural modification and second order optical nonlinearity in potassium niobium silicate glass. Journal of Non-Crystalline Solids, 2009, 355, 2578-2582.	3.1	16
21	Broadband infrared light-emitting patterns in optical glass by laser-induced nanostructuring of NiO-doped alkali-gallium germanosilicates. Optics Letters, 2013, 38, 492.	3.3	16
22	Spatially selective Au nanoparticle growth in laser-quality glass controlled by UV-induced phosphate-chain cross-linkage. Nanotechnology, 2013, 24, 225302.	2.6	16
23	Pre-crystallization heat treatment and infrared luminescence enhancement in Ni2+-doped transparent glass-ceramics. Journal of Non-Crystalline Solids, 2019, 515, 42-49.	3.1	15
24	Sol–Gel Strategy for Self-Induced Fluorination and Dehydration of Silica with Extended Vacuum Ultraviolet Transmittance and Radiation Hardness. Chemistry of Materials, 2012, 24, 677-681.	6.7	14
25	Microfluorescence Analysis of Nanostructuring Inhomogeneity in Optical Fibers with Embedded Gallium Oxide Nanocrystals. Microscopy and Microanalysis, 2012, 18, 259-265.	0.4	13
26	Competition between green self-trapped-exciton and red non-bridging-oxygen emissions in SiO2 under interband excitation. Communications Physics, 2018, 1, .	5.3	13
27	Diffusion-driven and size-dependent phase changes of gallium oxide nanocrystals in a glassy host. Physical Chemistry Chemical Physics, 2015, 17, 5141-5150.	2.8	11
28	A new double layer super-capacitor made by free-standing activated carbon membranes and highly concentrated potassium acetate solutions. Electrochimica Acta, 2020, 364, 137323.	5.2	11
29	Physicochemical properties of Pyr13TFSI-NaTFSI electrolyte for sodium batteries. Electrochimica Acta, 2022, 412, 140123.	5.2	11
30	Mn sites in cordierite - electron paramagnetic resonance, luminescence, and optical absorption analysis. European Journal of Mineralogy, 2012, 24, 447-456.	1.3	10
31	Structural rearrangement at the yttrium-depleted surface of HCl-processed yttrium aluminosilicate glass for 90Y-microsphere brachytherapy. Materials Chemistry and Physics, 2012, 133, 24-28.	4.0	10
32	Infrared spectroscopic properties of low-phonon lanthanide-doped KLuS2 crystals. Journal of Luminescence, 2019, 211, 100-107.	3.1	10
33	Crystallization of nanoheterogeneities in Ga-containing germanosilicate glass: Dielectric and refractive response changes. Acta Materialia, 2014, 70, 19-29.	7.9	9
34	FeTiO 3 as Anode Material for Sodiumâ€lon Batteries: from Morphology Control to Decomposition. ChemElectroChem, 2020, 7, 1713-1722.	3.4	9
35	Role of sol-gel networking and fluorine doping in the silica Urbach energy. Journal of Non-Crystalline Solids, 2011, 357, 1838-1841.	3.1	8
36	Donor–Acceptor Control in Grownâ€inâ€Glass Gallium Oxide Nanocrystals by Crystallizationâ€driven Heterovalent Doping. ChemPhysChem, 2017, 18, 662-669.	2.1	7

ROBERTO LORENZI

3.1

2

#	Article	IF	CITATIONS
37	Radio- and photoluminescence properties of Ce/Tb co-doped glasses with huntite-like composition. Optical Materials, 2018, 78, 247-252.	3.6	7
38	Tunable Dielectric Function in Electricâ€Responsive Glass with Treeâ€Like Percolating Pathways of Chargeable Conductive Nanoparticles. Advanced Functional Materials, 2010, 20, 3511-3518.	14.9	6
39	Defect-assisted photocatalytic activity of glass-embedded gallium oxide nanocrystals. Journal of Colloid and Interface Science, 2022, 608, 2830-2838.	9.4	6
40	Sol–gel synthesis of Ge nanophases in silica. Solid State Communications, 2007, 144, 429-432.	1.9	5
41	Study of the absorption edge of SnO2 nanoparticles embedded in silica films. Journal of Non-Crystalline Solids, 2011, 357, 1888-1891.	3.1	5
42	Nucleation-controlled vacancy formation in light-emitting wide-band-gap oxide nanocrystals in glass. Journal of Materials Chemistry C, 2015, 3, 4380-4387.	5.5	5
43	Disclosing mineralogical phases in medioeval iron nails by non-destructive neutron techniques. Archaeological and Anthropological Sciences, 2017, 9, 515-522.	1.8	5
44	Augmented excitation cross section of gadolinium ions in nanostructured glasses. Optics Letters, 2017, 42, 2419.	3.3	5
45	Promising Electrocatalytic Water and Methanol Oxidation Reaction Activity by Nickel Doped Hematite/Surface Oxidized Carbon Nanotubes Composite Structures. ChemPlusChem, 2022, 87, e202200036.	2.8	5
46	Updating of the interpretation of the optical absorption and emission of Verneuil synthetic and natural metamorphic blue sapphire: the role of V2+, V3+and Cr2+. IOP Conference Series: Materials Science and Engineering, 2010, 15, 012087.	0.6	4
47	Luminescence study of transition metal ions in natural magmatic and metamorphic yellow sapphires. IOP Conference Series: Materials Science and Engineering, 2010, 15, 012086.	0.6	4
48	Local crystallization of glasses aided by copper vapor laser. Glass and Ceramics (English Translation) Tj ETQq0 0	0 rgBT /Ov 9.6	verlock 10 Tf
49	Influence of the fiber drawing process on mechanical and vibrational properties of sol-gel silica glass. Journal of Non-Crystalline Solids, 2021, 555, 120534.	3.1	4
50	Tunable Dielectric Function in Electric-Responsive Glass with Tree-Like Percolating Pathways of Chargeable Conductive Nanoparticles. Advanced Functional Materials, 2010, 20, 3510-3510.	14.9	3
51	The role of networking in the optical anisotropy of hot-extruded calcium phosphate glass. Materials Chemistry and Physics, 2011, 128, 12-15.	4.0	3
52	Lenticular Ga-oxide nanostructures in thin amorphous germanosilicate layers - Size control and dimensional constraints. Materials and Design, 2021, 204, 109667.	7.0	3
53	A multidisciplinary non-destructive study of historical pipe organ fragments. Materials Characterization, 2019, 148, 317-322.	4.4	3

Raman study of fluorine effects on silica with embedded SnO2 nanoparticles. Journal of Non-Crystalline Solids, 2009, 355, 1149-1151.

ROBERTO LORENZI

#	Article	IF	CITATIONS
55	Broadband luminescence in nanostructured glasses. Glass and Ceramics (English Translation of) Tj ETQq1 1 0.784	814 rgBT 0.6	/Qverlock 1
56	Responsive charge transport in wide-band-gap oxide films of nanostructured amorphous alkali-gallium-germanosilicate. Journal of Materials Chemistry C, 2019, 7, 7768-7778.	5.5	2
57	Red emission doublets in diamond from vacancies interacting with interstitial carbon aggregates in tunneling configurations. Carbon, 2017, 120, 294-303.	10.3	2
58	Nanostructured SnO 2 -SiO 2 glassceramic thin films as electroluminescent material: an impedance spectroscopy analysis. Proceedings of SPIE, 2007, , .	0.8	1
59	Optical activity of Sn-variants of oxygen deficient centers in fluorine-modified silica. Journal of Non-Crystalline Solids, 2009, 355, 1024-1027.	3.1	1
60	Visible-light excited red-emitting vacancies at carbon interstitials as indicators of irradiated and annealed Type Ia diamonds. Diamond and Related Materials, 2018, 90, 188-193.	3.9	1
61	Photoluminescence of Gallate Glass-Ceramics: Al2O3 Influence. Glass and Ceramics (English) Tj ETQq1 1 0.784314	↓rgBT /Ον 0.6	verlock 10 T
62	Historical glass mosaic tesserae: a multi-analytical approach for their characterization. European Physical Journal Plus, 2021, 136, 1.	2.6	1
63	A Multi-Methodological Investigation of Natural and Synthetic Red Beryl Gemstones. Minerals (Basel,) Tj ETQq1 1	0,784314 2.0	rgBT /Over
64	Second harmonic generation from bulk glassceramics containing laser-poled dielectric nanocrystals. , 2007, , .		0
65	Ge nanoparticles growth in Ge-doped sol-gel silica by e-beam exposure. , 2008, , .		0
66	Optical microfiber passive devices and sensors. Proceedings of SPIE, 2011, , .	0.8	0
67	Food Safety: Thermochromic Latent-Pigment-Based Time-Temperature Indicators for Perishable Goods (Advanced Optical Materials 9/2015). Advanced Optical Materials, 2015, 3, 1163-1163.	7.3	Ο
68	Optical microfiber devices and sensors. , 2011, , .		0