Lihua Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/5362409/lihua-wang-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

12,786 107 240 54 h-index g-index citations papers 6.56 15,096 258 10.7 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
240	A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis. <i>Advanced Functional Materials</i> , 2010 , 20, 453-459	15.6	1234
239	Isothermal Amplification of Nucleic Acids. <i>Chemical Reviews</i> , 2015 , 115, 12491-545	68.1	865
238	DNA Nanotechnology-Enabled Drug Delivery Systems. <i>Chemical Reviews</i> , 2019 , 119, 6459-6506	68.1	447
237	A graphene-based fluorescent nanoprobe for silver(I) ions detection by using graphene oxide and a silver-specific oligonucleotide. <i>Chemical Communications</i> , 2010 , 46, 2596-8	5.8	432
236	Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. <i>Journal of the American Chemical Society</i> , 2006 , 128, 8575-80	16.4	389
235	An enzyme-based E-DNA sensor for sequence-specific detection of femtomolar DNA targets. Journal of the American Chemical Society, 2008, 130, 6820-5	16.4	379
234	A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. <i>Nature Protocols</i> , 2007 , 2, 2888-95	18.8	379
233	Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 8670-4	16.4	351
232	Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. <i>Chemical Communications</i> , 2006 , 3780-2	5.8	350
231	An Exonuclease III-Powered, On-Particle Stochastic DNA Walker. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 1855-1858	16.4	248
230	Complex silica composite nanomaterials templated with DNA origami. <i>Nature</i> , 2018 , 559, 593-598	50.4	233
229	A graphene-enhanced molecular beacon for homogeneous DNA detection. <i>Nanoscale</i> , 2010 , 2, 1021-6	7.7	206
228	Electrochemical interrogation of DNA monolayers on gold surfaces. <i>Analytical Chemistry</i> , 2005 , 77, 647.	5 -7 8 0	204
227	Nanoscale optical probes for cellular imaging. <i>Chemical Society Reviews</i> , 2014 , 43, 2650-61	58.5	166
226	Nanomaterial-Based Fluorescent DNA Analysis: A Comparative Study of the Quenching Effects of Graphene Oxide, Carbon Nanotubes, and Gold Nanoparticles. <i>Advanced Functional Materials</i> , 2013 , 23, 4140-4148	15.6	154
225	Stable Nanocomposite Based on PEGylated and Silver Nanoparticles Loaded Graphene Oxide for Long-Term Antibacterial Activity. <i>ACS Applied Materials & Discrete Amplied & Discrete Amp</i>	9.5	147
224	DNA Hydrogel with Aptamer-Toehold-Based Recognition, Cloaking, and Decloaking of Circulating Tumor Cells for Live Cell Analysis. <i>Nano Letters</i> , 2017 , 17, 5193-5198	11.5	144

(2017-2017)

223	Yolk-shell nanostructured FeO@C magnetic nanoparticles with enhanced peroxidase-like activity for label-free colorimetric detection of HO and glucose. <i>Nanoscale</i> , 2017 , 9, 4508-4515	7.7	136
222	A graphene-conjugated oligomer hybrid probe for light-up sensing of lectin and Escherichia coli. <i>Advanced Materials</i> , 2011 , 23, 4386-91	24	132
221	Dietary Iron Oxide Nanoparticles Delay Aging and Ameliorate Neurodegeneration in Drosophila. <i>Advanced Materials</i> , 2016 , 28, 1387-93	24	132
220	Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS nanosheet. <i>Biosensors and Bioelectronics</i> , 2017 , 94, 552-559	11.8	130
219	Design of a carbon nanotube/magnetic nanoparticle-based peroxidase-like nanocomplex and its application for highly efficient catalytic oxidation of phenols. <i>Nano Research</i> , 2009 , 2, 617-623	10	129
218	Programmable and printable Bacillus subtilis biofilms as engineered living materials. <i>Nature Chemical Biology</i> , 2019 , 15, 34-41	11.7	127
217	Organelle-Specific Triggered Release of Immunostimulatory Oligonucleotides from Intrinsically Coordinated DNA-Metal-Organic Frameworks with Soluble Exoskeleton. <i>Journal of the American Chemical Society</i> , 2017 , 139, 15784-15791	16.4	125
216	Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer-Tropsch synthesis. <i>Nature Communications</i> , 2018 , 9, 3250	17.4	124
215	Solving mazes with single-molecule DNA navigators. <i>Nature Materials</i> , 2019 , 18, 273-279	27	121
214	Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging. <i>Nature Communications</i> , 2017 , 8, 15646	17.4	116
213	Multiple-Armed Tetrahedral DNA Nanostructures for Tumor-Targeting, Dual-Modality in Vivo Imaging. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 4378-84	9.5	110
212	Framework nucleic acids as programmable carrier for transdermal drug delivery. <i>Nature Communications</i> , 2019 , 10, 1147	17.4	106
211	DNA Nanostructure-Programmed Like-Charge Attraction at the Cell-Membrane Interface. <i>ACS Central Science</i> , 2018 , 4, 1344-1351	16.8	102
2 10	Highly Stable Graphene-Based Nanocomposite (GO-PEI-Ag) with Broad-Spectrum, Long-Term Antimicrobial Activity and Antibiofilm Effects. <i>ACS Applied Materials & Discourse (ACS Applied Materials & Discourse)</i> 10, 17617-1	<i>76</i> 29	95
209	Programming nanoparticle valence bonds with single-stranded DNA encoders. <i>Nature Materials</i> , 2020 , 19, 781-788	27	88
208	Facile Synthesis of a MoS-Prussian Blue Nanocube Nanohybrid-Based Electrochemical Sensing Platform for Hydrogen Peroxide and Carcinoembryonic Antigen Detection. <i>ACS Applied Materials & Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS APPLIED ACS APPLIED</i>	9.5	86
207	One-Shot Immunomodulatory Nanodiamond Agents for Cancer Immunotherapy. <i>Advanced Materials</i> , 2016 , 28, 2699-708	24	85
206	Programming Cell Adhesion for On-Chip Sequential Boolean Logic Functions. <i>Journal of the American Chemical Society</i> , 2017 , 139, 10176-10179	16.4	85

205	Inhibiting Methicillin-Resistant Staphylococcus aureus by Tetrahedral DNA Nanostructure-Enabled Antisense Peptide Nucleic Acid Delivery. <i>Nano Letters</i> , 2018 , 18, 5652-5659	11.5	82
204	Framework-Nucleic-Acid-Enabled Biosensor Development. ACS Sensors, 2018, 3, 903-919	9.2	79
203	Uniform Au@Pt core-shell nanodendrites supported on molybdenum disulfide nanosheets for the methanol oxidation reaction. <i>Nanoscale</i> , 2016 , 8, 602-8	7.7	77
202	Electrochemical single nucleotide polymorphisms genotyping on surface immobilized three-dimensional branched DNA nanostructure. <i>Science China Chemistry</i> , 2011 , 54, 1273-1276	7.9	77
201	DNA Framework-Programmed Cell Capture via Topology-Engineered Receptor-Ligand Interactions. Journal of the American Chemical Society, 2019 , 141, 18910-18915	16.4	72
2 00	Programming Enzyme-Initiated Autonomous DNAzyme Nanodevices in Living Cells. <i>ACS Nano</i> , 2017 , 11, 11908-11914	16.7	7°
199	Novel amphoteric ion exchange membranes by blending sulfonated poly(ether ether ketone)/quaternized poly(ether imide) for vanadium redox flow battery applications. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 17590-17597	13	70
198	Valency-Controlled Framework Nucleic Acid Signal Amplifiers. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7131-7135	16.4	70
197	A Surface-Confined Proton-Driven DNA Pump Using a Dynamic 3D DNA Scaffold. <i>Advanced Materials</i> , 2016 , 28, 6860-5	24	70
196	Quantizing single-molecule surface-enhanced Raman scattering with DNA origami metamolecules. <i>Science Advances</i> , 2019 , 5, eaau4506	14.3	67
195	DNA-Encoded Raman-Active Anisotropic Nanoparticles for microRNA Detection. <i>Analytical Chemistry</i> , 2017 , 89, 9850-9856	7.8	67
194	A graphene oxide-based fluorescent biosensor for the analysis of peptide-receptor interactions and imaging in somatostatin receptor subtype 2 overexpressed tumor cells. <i>Analytical Chemistry</i> , 2013 , 85, 7732-7	7.8	63
193	Electrochemical Interrogation of Interactions between Surface-Confined DNA and Methylene Blue. <i>Sensors</i> , 2007 , 7, 2671-2680	3.8	60
192	Transfer of Two-Dimensional Oligonucleotide Patterns onto Stereocontrolled Plasmonic Nanostructures through DNA-Origami-Based Nanoimprinting Lithography. <i>Angewandte Chemie -</i> <i>International Edition</i> , 2016 , 55, 8036-40	16.4	60
191	Size-Dependent Regulation of Intracellular Trafficking of Polystyrene Nanoparticle-Based Drug-Delivery Systems. <i>ACS Applied Materials & Drug-Delivery Systems</i> . <i>ACS Applied Materials & Drug-Delivery Systems</i> .	9.5	59
190	Gold nanoparticlebased optical probes for target-responsive DNA structures 2008 , 41, 37-41		58
189	Single copy-sensitive electrochemical assay for circulating methylated DNA in clinical samples with ultrahigh specificity based on a sequential discrimination-amplification strategy. <i>Chemical Science</i> , 2017 , 8, 4764-4770	9.4	55
188	Novel sulfonated polyimide/polyvinyl alcohol blend membranes for vanadium redox flow battery applications. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 2072-2081	13	54

(2019-2020)

187	Treating Acute Kidney Injury with Antioxidative Black Phosphorus Nanosheets. <i>Nano Letters</i> , 2020 , 20, 1447-1454	11.5	54	
186	Gold-Nanoparticle-Based Multicolor Nanobeacons for Sequence-Specific DNA Analysis. <i>Angewandte Chemie</i> , 2009 , 121, 8826-8830	3.6	53	
185	Unraveling Mechanism on Reducing Thermal Hysteresis Width of VO2 by Ti Doping: A Joint Experimental and Theoretical Study. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 18938-18944	3.8	52	
184	Amplified fluorescent recognition of g-quadruplex folding with a cationic conjugated polymer and DNA intercalator. <i>ACS Applied Materials & Interfaces</i> , 2010 , 2, 3211-6	9.5	52	
183	Ultrasensitive aptamer-based protein assays based on one-dimensional core-shell nanozymes. <i>Biosensors and Bioelectronics</i> , 2020 , 150, 111881	11.8	52	
182	Nanodiamond autophagy inhibitor allosterically improves the arsenical-based therapy of solid tumors. <i>Nature Communications</i> , 2018 , 9, 4347	17.4	52	
181	A novel ultrasensitive electrochemical DNA sensor based on double tetrahedral nanostructures. <i>Biosensors and Bioelectronics</i> , 2015 , 71, 434-438	11.8	50	
180	Targeted Imaging of Brain Tumors with a Framework Nucleic Acid Probe. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 3414-3420	9.5	50	
179	Implementing digital computing with DNA-based switching circuits. <i>Nature Communications</i> , 2020 , 11, 121	17.4	50	
178	Programming Cell-Cell Communications with Engineered Cell Origami Clusters. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8800-8808	16.4	50	
177	Stochastic DNA Walkers in Droplets for Super-Multiplexed Bacterial Phenotype Detection. Angewandte Chemie - International Edition, 2019 , 58, 15448-15454	16.4	49	
176	In Situ Spatial Complementation of Aptamer-Mediated Recognition Enables Live-Cell Imaging of Native RNA Transcripts in Real Time. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 972-976	16.4	48	
175	Programming Chemical Reaction Networks Using Intramolecular Conformational Motions of DNA. <i>ACS Nano</i> , 2018 , 12, 7093-7099	16.7	47	
174	Bubble-Mediated Ultrasensitive Multiplex Detection of Metal Ions in Three-Dimensional DNA Nanostructure-Encoded Microchannels. <i>ACS Applied Materials & Design Communication (Nature Acts Applied Materials & Design Communication)</i> 16026-16034	9.5	46	
173	Poly-cytosine-mediated nanotags for SERS detection of Hg. <i>Nanoscale</i> , 2017 , 9, 14184-14191	7.7	46	
172	Graphene oxide-assisted nucleic acids assays using conjugated polyelectrolytes-based fluorescent signal transduction. <i>Analytical Chemistry</i> , 2015 , 87, 3877-83	7.8	44	
171	Programming bulk enzyme heterojunctions for biosensor development with tetrahedral DNA framework. <i>Nature Communications</i> , 2020 , 11, 838	17.4	44	
170	Programming DNA origami patterning with non-canonical DNA-based metallization reactions. Nature Communications, 2019 , 10, 5597	17.4	42	

169	Valence-Engineering of Quantum Dots Using Programmable DNA Scaffolds. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 16077-16081	16.4	41
168	Three dimensional nano-assemblies of noble metal nanoparticle-infinite coordination polymers as specific oxidase mimetics for degradation of methylene blue without adding any cosubstrate. <i>Chemical Communications</i> , 2015 , 51, 2052-5	5.8	40
167	Biomimetic DNA Nanotubes: Nanoscale Channel Design and Applications. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 8996-9011	16.4	38
166	Dynamic Modulation of DNA Hybridization Using Allosteric DNA Tetrahedral Nanostructures. <i>Analytical Chemistry</i> , 2016 , 88, 8043-9	7.8	37
165	Fabrication of closed-cell polyimide inverse opal photonic crystals with excellent mechanical properties and thermal stability. <i>Journal of Materials Chemistry</i> , 2008 , 18, 2262		37
164	Acupuncture promotes mTOR-independent autophagic clearance of aggregation-prone proteins in mouse brain. <i>Scientific Reports</i> , 2016 , 6, 19714	4.9	37
163	Logic Catalytic Interconversion of G-Molecular Hydrogel. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 4512-4518	9.5	36
162	DNA origami cryptography for secure communication. <i>Nature Communications</i> , 2019 , 10, 5469	17.4	36
161	DNA Nanostructure-Based Systems for Intelligent Delivery of Therapeutic Oligonucleotides. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1701153	10.1	35
160	Formation of Honeycomb-Patterned Polyetherketone Cardo (PEK-C) Films in a Highly Humid Atmosphere. <i>Macromolecular Chemistry and Physics</i> , 2006 , 207, 1998-2005	2.6	34
159	Advances in Nanowire Transistor-Based Biosensors. <i>Small Methods</i> , 2018 , 2, 1700263	12.8	33
158	Nucleic Acids Analysis. <i>Science China Chemistry</i> , 2020 , 64, 1-33	7.9	33
157	An Exonuclease III-Powered, On-Particle Stochastic DNA Walker. <i>Angewandte Chemie</i> , 2017 , 129, 1881-	18,864	31
156	Systematic Study in Mammalian Cells Showing No Adverse Response to Tetrahedral DNA Nanostructure. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 15442-15448	9.5	31
155	Bacterial Analysis Using an Electrochemical DNA Biosensor with Poly-Adenine-Mediated DNA Self-Assembly. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 6895-6903	9.5	31
154	Preparation of ultrahigh-molecular-weight polyethylene membranes via a thermally induced phase-separation method. <i>Journal of Applied Polymer Science</i> , 2007 , 105, 3355-3362	2.9	31
153	Engineering DNA-Nanozyme Interfaces for Rapid Detection of Dental Bacteria. <i>ACS Applied Materials & Description of Dental Bacterial ACS Applied Materials & Description of Dental Bacterial ACS Applied Materials & Description of Dental Bacteria.</i>	9.5	30
152	Deciphering active biocompatibility of iron oxide nanoparticles from their intrinsic antagonism. Nano Research, 2018 , 11, 2746-2755	10	30

(2016-2018)

151	Graphene oxide-silver nanocomposites modulate biofilm formation and extracellular polymeric substance (EPS) production. <i>Nanoscale</i> , 2018 , 10, 19603-19611	7.7	30	
150	Poly-adenine-based programmable engineering of gold nanoparticles for highly regulated spherical DNAzymes. <i>Nanoscale</i> , 2015 , 7, 18671-6	7.7	29	
149	Constructing Higher-Order DNA Nanoarchitectures with Highly Purified DNA Nanocages. <i>ACS Applied Materials & DNA State of Materials & DNA State of</i>	9.5	29	
148	DNA hybridization "turns on" electro-catalysis at gold electrodes. <i>Chemical Communications</i> , 2007 , 1154	4-<u>6</u>. 8	28	
147	Real-Time Imaging of Endocytosis and Intracellular Trafficking of Semiconducting Polymer Dots. <i>ACS Applied Materials & Documents (Materials & Documents)</i> 21200-21208	9.5	27	
146	Encoding Carbon Nanotubes with Tubular Nucleic Acids for Information Storage. <i>Journal of the American Chemical Society</i> , 2019 , 141, 17861-17866	16.4	27	
145	Quantitative investigation of the poly-adenine DNA dissociation from the surface of gold nanoparticles. <i>Scientific Reports</i> , 2015 , 5, 10158	4.9	26	
144	Capturing transient antibody conformations with DNA origami epitopes. <i>Nature Communications</i> , 2020 , 11, 3114	17.4	26	
143	Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays. <i>Biosensors and Bioelectronics</i> , 2016 , 81, 92-96	11.8	26	
142	DNA orientation-specific adhesion and patterning of living mammalian cells on self-assembled DNA monolayers. <i>Chemical Science</i> , 2016 , 7, 2722-2727	9.4	26	
141	A Centrifugation-based Method for Preparation of Gold Nanoparticles and its Application in Biodetection. <i>International Journal of Molecular Sciences</i> , 2007 , 8, 526-532	6.3	26	
140	Molecular Threading-Dependent Mass Transport in Paper Origami for Single-Step Electrochemical DNA Sensors. <i>Nano Letters</i> , 2019 , 19, 369-374	11.5	26	
139	Nanoprobe-Initiated Enzymatic Polymerization for Highly Sensitive Electrochemical DNA Detection. <i>ACS Applied Materials & Design Action</i> , 7, 25618-23	9.5	25	
138	Encapsulation and release of living tumor cells using hydrogels with the hybridization chain reaction. <i>Nature Protocols</i> , 2020 , 15, 2163-2185	18.8	25	
137	DNA Origami-Enabled Engineering of Ligand-Drug Conjugates for Targeted Drug Delivery. <i>Small</i> , 2020 , 16, e1904857	11	25	
136	DNA Nanoribbon-Templated Self-Assembly of Ultrasmall Fluorescent Copper Nanoclusters with Enhanced Luminescence. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11836-11844	16.4	25	
135	Fractal Nanoplasmonic Labels for Supermultiplex Imaging in Single Cells. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11938-11946	16.4	23	
134	Silica Nanoparticles Target a Wnt Signal Transducer for Degradation and Impair Embryonic Development in Zebrafish. <i>Theranostics</i> , 2016 , 6, 1810-20	12.1	23	

133	Poly-adenine-mediated spherical nucleic acids for strand displacement-based DNA/RNA detection. <i>Biosensors and Bioelectronics</i> , 2019 , 127, 85-91	11.8	23
132	Mechanical Stress-Dependent Autophagy Component Release via Extracellular Nanovesicles in Tumor Cells. <i>ACS Nano</i> , 2019 , 13, 4589-4602	16.7	22
131	Solidifying framework nucleic acids with silica. <i>Nature Protocols</i> , 2019 , 14, 2416-2436	18.8	22
130	Formation of honeycomb films from poly(L-lactide)-block-poly(ethylene glycol) via water-droplet templating. <i>Polymer International</i> , 2007 , 56, 834-839	3.3	22
129	Superresolution imaging of telomeres with continuous wave stimulated emission depletion (STED) microscope. <i>Science China Chemistry</i> , 2016 , 59, 1519-1524	7.9	22
128	Humidity-Responsive Single-Nanoparticle-Layer Plasmonic Films. <i>Advanced Materials</i> , 2017 , 29, 160679	624	21
127	Co speciation in blue decorations of blue-and-white porcelains from Jingdezhen kiln by using XAFS spectroscopy. <i>Journal of Analytical Atomic Spectrometry</i> , 2011 , 26, 1796	3.7	21
126	A colorimetric strategy based on a water-soluble conjugated polymer for sensing pH-driven conformational conversion of DNA i-motif structure. <i>Biosensors and Bioelectronics</i> , 2010 , 25, 1838-42	11.8	21
125	Effects of nucleating agents on the porous structure of polyphenylene sulfide via thermally induced phase separation. <i>Journal of Applied Polymer Science</i> , 2008 , 107, 2475-2479	2.9	21
124	Probing the Intracellular Dynamics of Nitric Oxide and Hydrogen Sulfide Using an Activatable NIR II Fluorescence Reporter. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 8450-8454	16.4	21
123	Graphene Nanoprobes for Real-Time Monitoring of Isothermal Nucleic Acid Amplification. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 15245-15253	9.5	20
122	Programming Switchable Transcription of Topologically Constrained DNA. <i>Journal of the American Chemical Society</i> , 2020 , 142, 10739-10746	16.4	20
121	DNA Framework-Based Topological Cell Sorters. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10406-10410	16.4	20
120	Formation of honeycomb films based on a soluble polyimide synthesized from 2,2?-bis[4-(3,4-dicarboxyphenoxy)phenyl]hexafluoropropane dianhydride and 3,3?-dimethyl-4,4?-diaminodiphenylmethane. <i>Journal of Applied Polymer Science</i> , 2008 , 107, 618-623	2.9	19
119	Programmable Live-Cell CRISPR Imaging with Toehold-Switch-Mediated Strand Displacement. Angewandte Chemie - International Edition, 2020 , 59, 20612-20618	16.4	19
118	Serum protein corona-responsive autophagy tuning in cells. <i>Nanoscale</i> , 2018 , 10, 18055-18063	7.7	19
117	The Inhibition Effect of Graphene Oxide Nanosheets on the Development of Streptococcus mutans Biofilms. <i>Particle and Particle Systems Characterization</i> , 2017 , 34, 1700001	3.1	18
116	Unraveling Cell-Type-Specific Targeted Delivery of Membrane-Camouflaged Nanoparticles with Plasmonic Imaging. <i>Nano Letters</i> , 2020 , 20, 5228-5235	11.5	18

(2017-2019)

115	Programming chain-growth copolymerization of DNA hairpin tiles for in-vitro hierarchical supramolecular organization. <i>Nature Communications</i> , 2019 , 10, 1006	17.4	18	
114	Engineering electrochemical interface for biomolecular sensing. <i>Current Opinion in Electrochemistry</i> , 2019 , 14, 71-80	7.2	18	
113	Precisely Tailored DNA Nanostructures and their Theranostic Applications. <i>Chemical Record</i> , 2017 , 17, 1213-1230	6.6	17	
112	Identifying the Genotypes of Hepatitis B Virus (HBV) with DNA Origami Label. Small, 2018, 14, 1701718	11	17	
111	Charge Neutralization Drives the Shape Reconfiguration of DNA Nanotubes. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 5418-5422	16.4	17	
110	Programming DNA origami assembly for shape-resolved nanomechanical imaging labels. <i>Nature Protocols</i> , 2018 , 13, 1569-1585	18.8	17	
109	Gold nanoparticle-based sensing strategies for biomolecular detection. <i>Pure and Applied Chemistry</i> , 2010 , 82, 81-89	2.1	16	
108	is a microRNA safeguard for -induced inflammatory colon oncogenesis. ELife, 2018, 7,	8.9	16	
107	Nanoparticle-Assisted Alignment of Carbon Nanotubes on DNA Origami. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4892-4896	16.4	16	
106	Nanodiamonds Mediate Oral Delivery of Proteins for Stem Cell Activation and Intestinal Remodeling in Drosophila. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 18575-18583	9.5	15	
105	Encoding quantized fluorescence states with fractal DNA frameworks. <i>Nature Communications</i> , 2020 , 11, 2185	17.4	15	
104	Reversible Regulation of Catalytic Activity of Gold Nanoparticles with DNA Nanomachines. <i>Scientific Reports</i> , 2015 , 5, 14402	4.9	15	
103	Cancer-Specific MicroRNA Analysis with a Nonenzymatic Nucleic Acid Circuit. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 11220-11226	9.5	15	
102	Directing curli polymerization with DNA origami nucleators. <i>Nature Communications</i> , 2019 , 10, 1395	17.4	14	
101	In Situ Spatial Complementation of Aptamer-Mediated Recognition Enables Live-Cell Imaging of Native RNA Transcripts in Real Time. <i>Angewandte Chemie</i> , 2018 , 130, 984-988	3.6	14	
100	Multifunctional Yolk-Shell Nanostructure as a Superquencher for Fluorescent Analysis of Potassium Ion Using Guanine-Rich Oligonucleotides. <i>ACS Applied Materials & Emp; Interfaces</i> , 2017 , 9, 30406-30413	9.5	14	
99	Recognizing single phospholipid vesicle collisions on carbon fiber nanoelectrode. <i>Science China Chemistry</i> , 2017 , 60, 1474-1480	7.9	14	
98	Cavity-Type DNA Origami-Based Plasmonic Nanostructures for Raman Enhancement. <i>ACS Applied Materials & Description (Naterials & Description (Nater</i>	9.5	13	

97	Preservation of DNA Nanostructure Carriers: Effects of Freeze-Thawing and Ionic Strength during Lyophilization and Storage. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 18434-18439	9.5	13
96	A DNA tetrahedral structure-mediated ultrasensitive fluorescent microarray platform for nucleic acid test. <i>Sensors and Actuators B: Chemical</i> , 2020 , 321, 128538	8.5	13
95	Multi-triggered and enzyme-mimicking graphene oxide/polyvinyl alcohol/G-quartet supramolecular hydrogels. <i>Nanoscale</i> , 2020 , 12, 5186-5195	7.7	13
94	The morphology and structure of crystals in Qing Dynasty purple-gold glaze excavated from the Forbidden City. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 5229-5240	3.8	13
93	DNA-Based Hybrid Hydrogels Sustain Water-Insoluble Ophthalmic Therapeutic Delivery against Allergic Conjunctivitis. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 26704-26710	9.5	13
92	DNA-Based Fabrication for Nanoelectronics. <i>Nano Letters</i> , 2020 , 20, 5604-5615	11.5	13
91	Transfer of Two-Dimensional Oligonucleotide Patterns onto Stereocontrolled Plasmonic Nanostructures through DNA-Origami-Based Nanoimprinting Lithography. <i>Angewandte Chemie</i> , 2016 , 128, 8168-8172	3.6	13
90	DNA Origami Radiometers for Measuring Ultraviolet Exposure. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8782-8789	16.4	13
89	Tailoring DNA Self-assembly to Build Hydrogels. <i>Topics in Current Chemistry</i> , 2020 , 378, 32	7.2	12
88	Sub-diffraction-limit cell imaging using a super-resolution microscope with simplified pulse synchronization. <i>Science China Chemistry</i> , 2017 , 60, 1305-1309	7.9	12
87	Distinct electronic switching behaviors of triphenylamine-containing polyimide memories with different bottom electrodes. <i>Applied Physics Letters</i> , 2010 , 96, 213305	3.4	12
86	Multichannel Immunosensor Platform for the Rapid Detection of SARS-CoV-2 and Influenza A(H1N1) Virus. <i>ACS Applied Materials & Interfaces</i> , 2021 , 13, 22262-22270	9.5	12
85	Prescribing Silver Chirality with DNA Origami. <i>Journal of the American Chemical Society</i> , 2021 , 143, 8639	- 86 .446	12
84	Recent Advances of DNA Nanostructure-Based Cell Membrane Engineering. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2001718	10.1	12
83	Classifying Cell Types with DNA-Encoded Ligand-Receptor Interactions on the Cell Membrane. <i>Nano Letters</i> , 2020 , 20, 3521-3527	11.5	11
82	Ultrasensitive Electrochemical DNA Biosensor Based on a Label-Free Assembling Strategy Using a Triblock polyA DNA Probe. <i>Analytical Chemistry</i> , 2019 , 91, 16002-16009	7.8	11
81	Epitope Binning Assay Using an Electron Transfer-Modulated Aptamer Sensor. <i>ACS Applied Materials & Emp; Interfaces</i> , 2018 , 10, 341-349	9.5	11
80	Poly-adenine-mediated fluorescent spherical nucleic acid probes for live-cell imaging of endogenous tumor-related mRNA. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2018 , 14, 1797	7 ⁶ 1807	11

79	Terminal deoxynucleotidyl transferase (TdT)-catalyzed homo-nucleotides-constituted ssDNA: Inducing tunable-size nanogap for core-shell plasmonic metal nanostructure and acting as Raman reporters for detection of Escherichia coli O157:H7. <i>Biosensors and Bioelectronics</i> , 2019 , 141, 111419	11.8	10
78	Translocation of tetrahedral DNA nanostructures through a solid-state nanopore. <i>Nanoscale</i> , 2019 , 11, 6263-6269	7.7	10
77	Single cell imaging with near-field terahertz scanning microscopy. Cell Proliferation, 2020, 53, e12788	7.9	10
76	Facile and controllable synthesis of triplex Au@AgPt@infinite coordination polymer coreThell nanoparticles for highly efficient immobilization of enzymes and enhanced electrochemical biosensing activity. <i>RSC Advances</i> , 2016 , 6, 86025-86033	3.7	10
75	Quantitative Zn speciation in zinc-containing steelmaking wastes by X-ray absorption spectroscopy. Journal of Analytical Atomic Spectrometry, 2012 , 27, 1667	3.7	10
74	Determination of Zn distribution and speciation in basic oxygen furnace sludge by synchrotron radiation induced EXRF and EXANES microspectroscopy. <i>X-Ray Spectrometry</i> , 2013 , 42, 423-428	0.9	10
73	SIZE AND SURFACE EFFECT OF GOLD NANOPARTICLES (AuNPs) IN NANOGOLD-ASSISTED PCR. Surface Review and Letters, 2008 , 15, 757-762	1.1	10
72	Programming Biomimetically Confined Aptamers with DNA Frameworks. ACS Nano, 2020, 14, 8776-8783	B16.7	9
71	Study of an archeological opaque red glass bead from China by XRD, XRF, and XANES. <i>X-Ray Spectrometry</i> , 2012 , 41, 363-366	0.9	9
70	Preparation, recognition characteristics and properties for quercetin molecularly imprinted polymers. <i>Desalination and Water Treatment</i> , 2011 , 34, 309-314		9
69	Porous honeycomb films prepared from poly (phthalazionone ether sulfone ketone) (PPESK) by self-organization method. <i>Journal of Applied Polymer Science</i> , 2008 , 109, 1524-1528	2.9	9
68	Label-Free and Three-Dimensional Visualization Reveals the Dynamics of Plasma Membrane-Derived Extracellular Vesicles. <i>Nano Letters</i> , 2020 , 20, 6313-6319	11.5	9
67	Genetically encoded X-ray cellular imaging for nanoscale protein localization. <i>National Science Review</i> , 2020 , 7, 1218-1227	10.8	8
66	Engineering a chemoenzymatic cascade for sustainable photobiological hydrogen production with green algae. <i>Energy and Environmental Science</i> , 2020 , 13, 2064-2068	35.4	8
65	Inclusion of guest materials in aqueous coordination network shells spontaneously generated by reacting 2,5-dimercapto-1,3,4-thiadiazole with nanoscale metallic silver. <i>RSC Advances</i> , 2014 , 4, 34294	3.7	8
64	Colouration mechanism of underglaze copper-red decoration porcelain (AD 13th-14th century), China. <i>Journal of Synchrotron Radiation</i> , 2014 , 21, 751-5	2.4	8
63	One-Dimensional Synergistic Core-Shell Nanozymes with Superior Peroxidase-like Activity for Ultrasensitive Colorimetric Detection of Blood Cholesterol <i>ACS Applied Bio Materials</i> , 2020 , 3, 5111-51	1 9 1	8
62	Gold nanoflower-based surface-enhanced Raman probes for pH mapping of tumor cell microenviroment. <i>Cell Proliferation</i> , 2019 , 52, e12618	7.9	7

61	Prescribing DNA Origami Patterns via Scaffold Decoration. Small, 2020, 16, e2000793	11	7
60	Effect of Diluent Mixture on Porous Structure of Polyphenylene Sulfide via Thermally Induced Phase Separation. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 2009 , 46, 1122-1127	2.2	7
59	Glycine cleavage system determines the fate of pluripotent stem cells via the regulation of senescence and epigenetic modifications. <i>Life Science Alliance</i> , 2019 , 2,	5.8	7
58	DNA-Guided Room-Temperature Synthesis of Single-Crystalline Gold Nanostructures on Graphdiyne Substrates. <i>ACS Central Science</i> , 2020 , 6, 779-786	16.8	7
57	Programming PAM antennae for efficient CRISPR-Cas9 DNA editing. <i>Science Advances</i> , 2020 , 6, eaay994	1814.3	6
56	Aggregation-induced emission luminogen for specific identification of malignant tumour in vivo. <i>Science China Chemistry</i> , 2020 , 63, 393-397	7.9	6
55	Charge Neutralization Drives the Shape Reconfiguration of DNA Nanotubes. <i>Angewandte Chemie</i> , 2018 , 130, 5516-5520	3.6	6
54	Spatial-Spectral Multiple Manifold Discriminant Analysis for Dimensionality Reduction of Hyperspectral Imagery. <i>Remote Sensing</i> , 2019 , 11, 2414	5	6
53	A Carbon-Based Antifouling Nano-Biosensing Interface for Label-Free POCT of HbA1c. <i>Biosensors</i> , 2021 , 11,	5.9	6
52	Encoding Fluorescence Anisotropic Barcodes with DNA Fameworks. <i>Journal of the American Chemical Society</i> , 2021 , 143, 10735-10742	16.4	6
51	Structural and optical control of DNA-mediated Janus plasmonic nanostructures. <i>Nanoscale</i> , 2016 , 8, 9337-42	7.7	6
50	Reconstructing Soma-Soma Synapse-like Vesicular Exocytosis with DNA Origami. <i>ACS Central Science</i> , 2021 , 7, 1400-1407	16.8	6
49	Quantitative Measurement of Spatial Effects of DNA Origami on Molecular Binding Reactions Detected using Atomic Force Microscopy. <i>ACS Applied Materials & Company Com</i>	19.5	5
48	PolyA-based DNA bonds with programmable bond length and bond energy. <i>NPG Asia Materials</i> , 2020 , 12,	10.3	5
47	Valency-Controlled Framework Nucleic Acid Signal Amplifiers. <i>Angewandte Chemie</i> , 2018 , 130, 7249-72	53 .6	5
46	The compositional characterization and painting technique of Chinese red and white porcelain by EDXRF and SR-XRF mapping analysis. <i>Analytical Methods</i> , 2017 , 9, 4380-4386	3.2	5
45	Programmable Live-Cell CRISPR Imaging with Toehold-Switch-Mediated Strand Displacement. <i>Angewandte Chemie</i> , 2020 , 132, 20793-20799	3.6	5
44	DNA Nanoribbon-Templated Self-Assembly of Ultrasmall Fluorescent Copper Nanoclusters with Enhanced Luminescence. <i>Angewandte Chemie</i> , 2020 , 132, 11934-11942	3.6	5

43	Tracking endocytosis and intracellular distribution of spherical nucleic acids with correlative single-cell imaging. <i>Nature Protocols</i> , 2021 , 16, 383-404	18.8	5
42	Programming folding cooperativity of the dimeric i-motif with DNA frameworks for sensing small pH variations. <i>Chemical Communications</i> , 2021 , 57, 3247-3250	5.8	5
41	Hydrophobic collapse-driven nanoparticle coating with poly-adenine adhesives. <i>Chemical Communications</i> , 2021 , 57, 3801-3804	5.8	5
40	Driving DNA Origami Assembly with a Terahertz Wave <i>Nano Letters</i> , 2021 ,	11.5	5
39	Poly-Adenine-Engineered Gold Nanogaps for SERS Nanostructures. <i>ACS Applied Nano Materials</i> , 2019 , 2, 3501-3509	5.6	4
38	Nanodiamonds Interfere with Wnt-Regulated Cell Migration and Adipocyte Differentiation in Cells and Embryonic Development In Vivo. <i>Particle and Particle Systems Characterization</i> , 2017 , 34, 1600208	3.1	4
37	The enzyme-amplified amperometric DNA sensor using an electrodeposited polymer redox mediator. <i>Science in China Series B: Chemistry</i> , 2009 , 52, 746-750		4
36	Probing the Intracellular Dynamics of Nitric Oxide and Hydrogen Sulfide Using an Activatable NIR II Fluorescence Reporter. <i>Angewandte Chemie</i> , 2021 , 133, 8531-8535	3.6	4
35	A nano-integrated microfluidic biochip for enzyme-based point-of-care detection of creatinine. <i>Chemical Communications</i> , 2021 , 57, 4726-4729	5.8	4
34	Programming cell communications with pH-responsive DNA nanodevices. <i>Chemical Communications</i> , 2021 , 57, 4536-4539	5.8	4
33	Nanoparticle-Assisted Alignment of Carbon Nanotubes on DNA Origami. <i>Angewandte Chemie</i> , 2020 , 132, 4922-4926	3.6	3
32	Structural and positional impact on DNAzyme-based electrochemical sensors for metal ions. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2019 , 21, 102035	6	3
31	A Gold-Nanoparticle-Based SERS Reporter that Rolls on DNA Origami Templates. <i>ChemNanoMat</i> , 2017 , 3, 760-763	3.5	3
30	Self-assembly fabrication of ordered microporous films from a soluble polyimide modified by methyl groups based on Breath Figures. <i>Desalination and Water Treatment</i> , 2013 , 51, 5107-5112		3
29	Immunostimulatory AIE Dots for Live-Cell Imaging and Drug Delivery. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 19660-19667	9.5	3
28	Remote Photothermal Control of DNA Origami Assembly in Cellular Environments. <i>Nano Letters</i> , 2021 , 21, 5834-5841	11.5	3
27	Programming biosensing sensitivity by controlling the dimension of nanostructured electrode. <i>Analytical and Bioanalytical Chemistry</i> , 2019 , 411, 4085-4092	4.4	3
26	Biomimetische DNA-Nanorfiren: Gezielte Synthese und Anwendung nanoskopischer Kanle. <i>Angewandte Chemie</i> , 2019 , 131, 9092-9108	3.6	3

25	Synchrotron radiation-based l1-norm regularization on micro-CT imaging in shale structure analysis. <i>Journal of Inverse and Ill-Posed Problems</i> , 2017 , 25,	1.3	2
24	Citrate-assisted efficient local delivery of naked oligonucleotide into live mouse brain cells. <i>Cell Proliferation</i> , 2019 , 52, e12622	7.9	2
23	DNA Framework-Based Topological Cell Sorters. <i>Angewandte Chemie</i> , 2020 , 132, 10492-10496	3.6	2
22	Synchrotron-Based Bioimaging in Cells and In vivo 2018 , 563-596		2
21	Nanomechanical Induction of Autophagy-Related Fluorescence in Single Cells with Atomic Force Microscopy. <i>Advanced Science</i> , 2021 , 8, e2102989	13.6	2
20	Probing Transient DNA Conformation Changes with an Intercalative Fluorescent Excimer. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 6624-6630	16.4	2
19	Detection of Single Nucleotide Polymorphisms by Fluorescence Embedded Dye SYBR Green I Based on Graphene Oxide. <i>Frontiers in Chemistry</i> , 2021 , 9, 631959	5	2
18	Construction of Functional DNA Nanostructures for Theranostic Applications93-130		2
17	In situ analysis of acupuncture protecting dopaminergic neurons from lipid peroxidative damage in mice of Parkinson@disease <i>Cell Proliferation</i> , 2022 , e13213	7.9	2
16	A smartphone-based three-in-one biosensor for co-detection of SARS-CoV-2 viral RNA, antigen and antibody <i>Chemical Communications</i> , 2022 , 58, 6108-6111	5.8	2
15	In-Situ Configuration Studies on Segmented DNA Origami Nanotubes. <i>ChemBioChem</i> , 2019 , 20, 1508-1	5 1 ;38	1
14	Benzyl-rich ligand engineering of the photostability of atomically precise gold nanoclusters <i>Chemical Communications</i> , 2022 ,	5.8	1
13	Asymmetric reconstruction of mammalian reovirus reveals interactions among RNA, transcriptional factor \$\tilde{\mu}\$2 and capsid proteins. <i>Nature Communications</i> , 2021 , 12, 4176	17.4	1
12	Advances in Whole-Cell Photobiological Hydrogen Production. <i>Advanced NanoBiomed Research</i> , 2021 , 1, 2000051	O	1
11	X-ray absorption spectroscopy study of synthetic cobalt blue pigments similar to Kangxi blue and white porcelain. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 2130-2136	3.8	1
10	Cryogenic Electron Microscopy for Resolving DNA Nanostructures and Their Complexes. <i>Small Structures</i> , 2021 , 2, 2100053	8.7	1
9	Ionic Current Fluctuation and Orientation of Tetrahedral DNA Nanostructures in a Solid-State Nanopore <i>Small</i> , 2022 , e2107237	11	0
8	Impact of Graphene Exposure on Microbial Activity and Community Ecosystem in Saliva <i>ACS Applied Bio Materials</i> , 2019 , 2, 226-235	4.1	O

LIST OF PUBLICATIONS

7	Recent Advances in Prescribing Chiral Plasmonics with DNA Frameworks. <i>ChemNanoMat</i> , 2022 , 8,	3.5	О
6	Insight into the antibacterial resistance of graphdiyne functionalized by silver nanoparticles <i>Cell Proliferation</i> , 2022 , e13236	7.9	O
5	Phase transferring luminescent gold nanoclusters via single-stranded DNA. Science China Chemistry,1	7.9	0
4	Synchrotron-Based X-ray Microscopy for Nanoscale Bioimaging 2018 , 767-784		
3	Innentitelbild: Valency-Controlled Framework Nucleic Acid Signal Amplifiers (Angew. Chem. 24/2018). <i>Angewandte Chemie</i> , 2018 , 130, 7066-7066	3.6	
2	AMPLIFIED BIOSENSING STRATEGIES FOR THE DETECTION OF BIOLOGICALLY RELATED MOLECULES WITH SILICA NANOPARTICLES AND CONJUGATED POLYELECTROLYTES. <i>Cosmos</i> , 2010 , 06, 207-219		
1	Probing Transient DNA Conformation Changes with an Intercalative Fluorescent Excimer. Angewandte Chemie, 2021, 133, 6698-6704	3.6	