David W Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5362133/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural basis for mismatch surveillance by CRISPR–Cas9. Nature, 2022, 603, 343-347.	13.7	116
2	Cross-Seeding Controls Al ² Fibril Populations and Resulting Functions. Journal of Physical Chemistry B, 2022, 126, 2217-2229.	1.2	4
3	Structural basis for broad anti-phage immunity by DISARM. Nature Communications, 2022, 13, .	5.8	10
4	Structural rearrangements allow nucleic acid discrimination by type I-D Cascade. Nature Communications, 2022, 13, .	5.8	17
5	Simplified geometric representations of protein structures identify complementary interaction interfaces. Proteins: Structure, Function and Bioinformatics, 2021, 89, 348-360.	1.5	7
6	Structure of a type IV CRISPR-Cas ribonucleoprotein complex. IScience, 2021, 24, 102201.	1.9	23
7	Remdesivir is a delayed translocation inhibitor of SARS-CoV-2 replication. Molecular Cell, 2021, 81, 1548-1552.e4.	4.5	90
8	Improving integrative 3D modeling into low―to mediumâ€resolution electron microscopy structures with evolutionary couplings. Protein Science, 2021, 30, 1006-1021.	3.1	2
9	Isolation of the Buchnera aphidicola flagellum basal body complexes from the Buchnera membrane. PLoS ONE, 2021, 16, e0245710.	1.1	2
10	SCOPE enables type III CRISPR-Cas diagnostics using flexible targeting and stringent CARF ribonuclease activation. Nature Communications, 2021, 12, 5033.	5.8	57
11	Separating distinct structures of multiple macromolecular assemblies from cryo-EM projections. Journal of Structural Biology, 2020, 209, 107416.	1.3	19
12	Engineered CRISPR/Cas9 enzymes improve discrimination by slowing DNA cleavage to allow release of off-target DNA. Nature Communications, 2020, 11, 3576.	5.8	55
13	Diverse CRISPR-Cas Complexes Require Independent Translation of Small and Large Subunits from a Single Gene. Molecular Cell, 2020, 80, 971-979.e7.	4.5	27
14	Structural basis for assembly of non-canonical small subunits into type I-C Cascade. Nature Communications, 2020, 11, 5931.	5.8	23
15	Functionalized Mesoporous Silicas Direct Structural Polymorphism of Amyloid-β Fibrils. Langmuir, 2020, 36, 7345-7355.	1.6	3
16	Structural Biology in the Multi-Omics Era. Journal of Chemical Information and Modeling, 2020, 60, 2424-2429.	2.5	13
17	The final cut: Cas9 editing. Nature Structural and Molecular Biology, 2019, 26, 669-670.	3.6	11
18	Kinetic characterization of Cas9 enzymes. Methods in Enzymology, 2019, 616, 289-311.	0.4	6

DAVID W TAYLOR

#	Article	IF	CITATIONS
19	Tightly-orchestrated rearrangements govern catalytic center assembly of the ribosome. Nature Communications, 2019, 10, 958.	5.8	51
20	Electron microscopy snapshots of single particles from single cells. Journal of Biological Chemistry, 2019, 294, 1602-1608.	1.6	19
21	Supercharging enables organized assembly of synthetic biomolecules. Nature Chemistry, 2019, 11, 204-212.	6.6	70
22	Kinetic Basis for Improved Specificity of CRISPR/Cas9 High Fidelity Variants. FASEB Journal, 2019, 33, 620.4.	0.2	0
23	DNA Unwinding Is the Primary Determinant of CRISPR-Cas9 Activity. Cell Reports, 2018, 22, 359-371.	2.9	141
24	Cas4-Dependent Prespacer Processing Ensures High-Fidelity Programming of CRISPR Arrays. Molecular Cell, 2018, 70, 48-59.e5.	4.5	91
25	Classification of Single Particles from Human Cell Extract Reveals Distinct Structures. Cell Reports, 2018, 24, 259-268.e3.	2.9	32
26	Box C/D sRNA stem ends act as stabilizing anchors for box C/D di-sRNPs. Nucleic Acids Research, 2016, 44, 8976-8989.	6.5	15
27	DNA Targeting by a Minimal CRISPR RNA-Guided Cascade. Molecular Cell, 2016, 63, 840-851.	4.5	75
28	Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science, 2016, 351, 867-871.	6.0	512
29	Antigenic and Cryo-Electron Microscopy Structure Analysis of a Chimeric Sapovirus Capsid. Journal of Virology, 2016, 90, 2664-2675.	1.5	15
30	Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning. Science, 2015, 348, 581-585.	6.0	126
31	Rational design of a split-Cas9 enzyme complex. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2984-2989.	3.3	255
32	A Single α Helix Drives Extensive Remodeling of the Proteasome Lid and Completion of Regulatory Particle Assembly. Cell, 2015, 163, 432-444.	13.5	73
33	Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation. Science, 2014, 343, 1247997.	6.0	938
34	CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6618-6623.	3.3	206
35	RNA Targeting by the Type III-A CRISPR-Cas Csm Complex of Thermus thermophilus. Molecular Cell, 2014, 56, 518-530.	4.5	267
36	Cryo-Electron Microscopic Study of the Enzymatic Mechanism of the RNA 2'-O-Methyltransferase Box CD sRNP. Microscopy and Microanalysis, 2014, 20, 1284-1285.	0.2	9

DAVID W TAYLOR

#	Article	IF	CITATIONS
37	Structure and Activity of the RNA-Targeting Type III-B CRISPR-Cas Complex of Thermus thermophilus. Molecular Cell, 2013, 52, 135-145.	4.5	212
38	An RNA Degradation Machine Sculpted by Ro Autoantigen and Noncoding RNA. Cell, 2013, 153, 166-177.	13.5	81
39	Substrate-specific structural rearrangements of human Dicer. Nature Structural and Molecular Biology, 2013, 20, 662-670.	3.6	89
40	Non-coding Y RNAs as tethers and gates. RNA Biology, 2013, 10, 1602-1608.	1.5	30
41	Structural Basis for Broad Detection of Genogroup II Noroviruses by a Monoclonal Antibody That Binds to a Site Occluded in the Viral Particle. Journal of Virology, 2012, 86, 3635-3646.	1.5	75
42	The box C/D sRNP dimeric architecture is conserved across domain Archaea. Rna, 2012, 18, 1527-1540.	1.6	19
43	The Box C/D sRNP dimeric architecture is conserved across Kingdom Archaea. FASEB Journal, 2012, 26, 773.2.	0.2	0
44	A Novel miRNA Processing Pathway Independent of Dicer Requires Argonaute2 Catalytic Activity. Science, 2010, 328, 1694-1698.	6.0	718
45	Structural insights into RNA processing by the human RISC-loading complex. Nature Structural and Molecular Biology, 2009, 16, 1148-1153.	3.6	215
46	DNA Unwinding Is the Primary Determinant of CRISPR-Cas9 Activity. SSRN Electronic Journal, 0, , .	0.4	0