Jian-yong Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5361960/publications.pdf

Version: 2024-02-01

304743 254184 1,911 49 22 43 h-index citations g-index papers 56 56 56 2551 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bisanthraceneâ€Based Donor–Acceptorâ€type Lightâ€Emitting Dopants: Highly Efficient Deepâ€Blue Emission i Organic Lightâ€Emitting Devices. Advanced Functional Materials, 2014, 24, 2064-2071.	ղ _{4.9}	278
2	Recent progress in porphyrin-based materials for organic solar cells. Journal of Materials Chemistry A, 2018, 6, 16769-16797.	10.3	215
3	Functionalization of Pyrene To Prepare Luminescent Materials—Typical Examples of Synthetic Methodology. Chemistry - A European Journal, 2016, 22, 11898-11916.	3.3	202
4	Naphthodithiophenediimide (NDTI): Synthesis, Structure, and Applications. Journal of the American Chemical Society, 2013, 135, 11445-11448.	13.7	172
5	Synthesis and Photophysical Properties of Pyreneâ€Based Lightâ€Emitting Monomers: Highly Pureâ€Blueâ€Fluorescent, Cruciformâ€Shaped Architectures. European Journal of Organic Chemistry, 2010, 2010, 72-79.	2.4	78
6	Excimer-emitting single molecules with stacked π-conjugated groups covalently linked at the 1,8-positions of naphthalene for highly efficient blue and green OLEDs. Journal of Materials Chemistry C, 2013, 1, 3871.	5.5	55
7	A single-molecule excimer-emitting compound for highly efficient fluorescent organic light-emitting devices. Chemical Communications, 2012, 48, 8434.	4.1	53
8	Blue-Emitting Butterfly-Shaped 1,3,5,9-Tetraarylpyrenes: Synthesis, Crystal Structures, and Photophysical Properties. Organic Letters, 2013, 15, 1318-1321.	4.6	53
9	An Efficient Approach to the Synthesis of Novel Pyrene-Fused Azaacenes. Organic Letters, 2013, 15, 3594-3597.	4.6	48
10	Pyreneâ€Based Yâ€shaped Solidâ€State Blue Emitters: Synthesis, Characterization, and Photoluminescence. Chemistry - an Asian Journal, 2012, 7, 2854-2863.	3.3	46
11	Pyrene-cored blue-light emitting [4]helicenes: synthesis, crystal structures, and photophysical properties. Organic and Biomolecular Chemistry, 2013, 11, 2186.	2.8	46
12	New pyrene-based butterfly-shaped blue AlEgens: Synthesis, structure, aggregation-induced emission and their nondoped blue OLEDs. Dyes and Pigments, 2020, 173, 107881.	3.7	43
13	Versatile Donorâ^π–Acceptor-Type Aggregation-Enhanced Emission Active Fluorophores as Both Highly Efficient Nondoped Emitter and Excellent Host. ACS Applied Materials & 1, 1, 1, 1, 1, 2, 32946-32956.	8.0	40
14	A universal host material with a simple structure for monochrome and white phosphorescent/TADF OLEDs. Journal of Materials Chemistry C, 2019, 7, 558-566.	5. 5	39
15	Naphthodithiophenediimide (NDTI)-based triads for high-performance air-stable, solution-processed ambipolar organic field-effect transistors. Journal of Materials Chemistry C, 2015, 3, 4244-4249.	5. 5	36
16	Regioselective Substitution at the 1,3- and 6,8-Positions of Pyrene for the Construction of Small Dipolar Molecules. Journal of Organic Chemistry, 2015, 80, 10973-10978.	3.2	36
17	Solution Coating of Superior Largeâ€Area Flexible Perovskite Thin Films with Controlled Crystal Packing. Advanced Optical Materials, 2017, 5, 1700102.	7.3	34
18	Highly efficient electroluminescence from evaporation- and solution-processable orange–red thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2019, 7, 12321-12327.	5.5	31

#	Article	IF	Citations
19	New <scp>Quinoxalineâ€Based</scp> Blue Emitters: Molecular Structures, <scp>Aggregationâ€Induced</scp> Enhanced Emission Characteristics and <scp>OLED</scp> Application. Chinese Journal of Chemistry, 2021, 39, 2154-2162.	4.9	31
20	Highly emissive hand-shaped π-conjugated alkynylpyrenes: Synthesis, structures, and photophysical properties. Organic and Biomolecular Chemistry, 2012, 10, 2255.	2.8	30
21	Synthesis and photophysical properties of novel butterfly-shaped blue emitters based on pyrene. Organic and Biomolecular Chemistry, 2013, 11, 8366.	2.8	29
22	Design and Synthesis of a Novel nâ€√ype Polymer Based on Asymmetric Rylene Diimide for the Application in Allâ€Polymer Solar Cells. Macromolecular Rapid Communications, 2018, 39, e1700715.	3.9	27
23	Synthesis, structural and spectral properties of diarylamino-functionalized pyrene derivatives via Buchwald–Hartwig amination reaction. Journal of Molecular Structure, 2013, 1035, 19-26.	3.6	22
24	Two Isomeric Azulene-Decorated Naphthodithiophene Diimide-based Triads: Molecular Orbital Distribution Controls Polarity Change of OFETs Through Connection Position. ACS Applied Materials & Samp; Interfaces, 2020, 12, 23225-23235.	8.0	21
25	Synthesis and Optical Properties of Donor–Acceptor-Type 1,3,5,9-Tetraarylpyrenes: Controlling Intramolecular Charge-Transfer Pathways by the Change of π-Conjugation Directions for Emission Color Modulations. ACS Omega, 2018, 3, 5866-5875.	3.5	20
26	Perfluorinated Sulfonic acid Resin (Nafion-H) catalysed Ritter reaction of Benzyl Alcohols. Journal of Chemical Research, 2007, 2007, 641-643.	1.3	18
27	Influence of substituent position on thermal properties, photoluminescence and morphology of pyrene–fluorene derivatives. Journal of Molecular Structure, 2015, 1086, 216-222.	3.6	18
28	1,3,5,9-Tetra(4-(1,2,2-triphenylvinyl)phenyl)pyrene (TTPE(1,3,5,9)Py): a prominent blue AlEgen for highly efficient nondoped pure-blue OLEDs. Journal of Materials Chemistry C, 2020, 8, 17450-17456.	5.5	18
29	Iron(<scp>iii</scp>) bromide catalyzed bromination of 2-tert-butylpyrene and corresponding position-dependent aryl-functionalized pyrene derivatives. RSC Advances, 2015, 5, 8835-8848.	3.6	17
30	Diphenylamine/triazine hybrids as bipolar hosts for phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 4461-4468.	5.5	14
31	Synthesis and fluorescence emission properties of 1,3,6,8-tetraarylpyrenes. Journal of Molecular Structure, 2013, 1047, 194-203.	3.6	13
32	Synthesis, Structural, and Photophysical Properties of the First Member of the Class of Pyreneâ€Based [4]Helicenes. European Journal of Organic Chemistry, 2013, 2013, 5829-5837.	2.4	13
33	Exploring a Fused 2-(Thiophen-2-yl)thieno[3,2- $\langle i \rangle$ b $\langle i \rangle$]thiophene (T-TT) Building Block to Construct n-Type Polymer for High-Performance All-Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42412-42419.	8.0	13
34	Hybrid host materials for highly efficient electrophosphorescence and thermally activated delayed fluorescence independent of the linkage mode. Physical Chemistry Chemical Physics, 2017, 19, 5177-5184.	2.8	12
35	Perfluorinated sulfonic acid resin (Nafion-H) catalysed <i>trans-t</i> -butylation of 7- <i>t</i> -butyl-1,3-disubstituted pyrenes; a new route for the preparation of 1,3-disubstituted pyrenes. Journal of Chemical Research, 2006, 2006, 762-765.	1.3	10
36	Synthesis and Structural Properties of Novel Polycyclic Aromatic Compounds using Photo-Induced Cyclisation of 2,7-di-tert-butyl-4-(phenylethenyl)pyrenes. Journal of Chemical Research, 2008, 2008, 457-460.	1.3	9

#	Article	IF	CITATIONS
37	Blue-emitting butterfly-shaped donor–acceptor-type 1,3,5,9-tetraarylpyrenes: easily available, low-cost conventional fluorophores for high-performance near ultraviolet electroluminescence with CIE _y < 0.05. Journal of Materials Chemistry C, 2021, 9, 260-269.	5 . 5	9
38	Color-tunable emission from violet-blue to pure-blue based on 5,9-disubstituted pyrene derivatives $\langle i \rangle via \langle i \rangle$ engineering of aryl-side groups. Journal of Materials Chemistry C, 0, , .	5 . 5	9
39	Synthesis and Fluorescence Emission Properties of 1,3,6,8-Tetrakis(9H-Fluoren-2-yl)Pyrene Derivative. Journal of Chemical Research, 2010, 34, 278-282.	1.3	8
40	Electrophilic Aromatic Substitution of 7-f-butyl-1,3-dimethylpyrene: Preparation of 5-mono- and 5,9-di-substituted 7-f-butyl-1,3-dimethylpyrenes. Journal of Chemical Research, 2008, 2008, 308-311.	1.3	7
41	Synthesis and Spectral Properties of 2,7-di- <i>tert</i> -butyl-4,9-bis(arylethynyl)-and 4,10-bis(arylethynyl)pyrenes. Journal of Chemical Research, 2009, 2009, 109-113.	1.3	7
42	Arylacetylene end capped naphthodithiophene diimide (NDTI)-based semiconductors for air-stable, solution-processed n-channel organic field-effect transistors: Effect of terminal aryl groups on charge transport. Dyes and Pigments, 2019, 169, 7-14.	3.7	7
43	Synthesis, crystal structure and photophysical properties of 5-mono- and 5,9-bis-(arylethynyl)-functionalized pyrenes. Journal of Luminescence, 2013, 141, 111-120.	3.1	6
44	Medium-size Cyclophanes, 77. ¹ Synthesis and addition of Bromine to <i>syn</i> -[2. <i>n</i>] meta-cyclophan-1-enes. Journal of Chemical Research, 2007, 2007, 621-625.	1.3	4
45	End-Capping π-Conjugated Naphthodithiophene Diimide (NDTI)-Based Triads with Noncovalent Intramolecular S···O Interactions: A Route towards High-Performance Solution-Processable Air-Stable n-Type Semiconductors. ACS Applied Electronic Materials, 2021, 3, 5573-5583.	4.3	4
46	Polarity change of OFETs based on Dithienocoronene Diimide (DTCDI)-Derived isomeric triads end-capped with Azulene. Dyes and Pigments, 2022, 203, 110311.	3.7	4
47	Synthesis and Conformational Studies of 2,11-Dithia[3]Metacyclo-[3](1,3)Pyrenophanes: The Ring Current Interactions Derived from Pyrene Ring. Journal of Chemical Research, 2008, 2008, 731-734.	1.3	2
48	Dithienocoronene diimide (DTCDI)-derived triads for high-performance air-stable, solution-processed balanced ambipolar organic field-effect transistors. Physical Chemistry Chemical Physics, 2021, 23, 16357-16365.	2.8	2
49	Synthesis and Photophysical Properties of Pyrene-Based Multiply Conjugated Shaped Light-Emitting Architectures: Toward Efficient Organic-Light-Emitting Diodes. , 0, , .		2