Christophe Sauret

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5361286/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of field rolling resistance of manual wheelchairs. Journal of Rehabilitation Research and Development, 2012, 49, 63.	1.6	40
2	Effects of user's actions on rolling resistance and wheelchair stability during handrim wheelchair propulsion in the field. Medical Engineering and Physics, 2013, 35, 289-297.	1.7	36
3	Validation of hip joint center localization methods during gait analysis using 3D EOS imaging in typically developing and cerebral palsy children. Gait and Posture, 2016, 48, 30-35.	1.4	28
4	On the use of knee functional calibration to determine the medio-lateral axis of the femur in gait analysis: Comparison with EOS biplanar radiographs as reference. Gait and Posture, 2016, 50, 180-184.	1.4	27
5	Effect of shoulder model complexity in upper-body kinematics analysis of the golf swing. Journal of Biomechanics, 2018, 75, 154-158.	2.1	22
6	APSIC: Training and fitting amputees during situations of daily living. Irbm, 2014, 35, 60-65.	5.6	20
7	Influence of patient axial malpositioning on the trueness and precision of pelvic parameters obtained from 3D reconstructions based on biplanar radiographs. European Radiology, 2017, 27, 1295-1302.	4.5	20
8	Drag force mechanical power during an actual propulsion cycle on a manual wheelchair. Irbm, 2009, 30, 3-9.	5.6	19
9	A method for the field assessment of rolling resistance properties of manual wheelchairs. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 381-391.	1.6	18
10	Three-dimensional evaluation of skeletal deformities of the pelvis and lower limbs in ambulant children with cerebral palsy. Gait and Posture, 2016, 49, 102-107.	1.4	18
11	Accuracy and kinematics consistency of marker-based scaling approaches on a lower limb model: a comparative study with imagery data. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 23, 114-125.	1.6	17
12	Physiology, biomechanics and injuries in table tennis: A systematic review. Science and Sports, 2021, 36, 95-104.	0.5	11
13	Measurement of wheelchair adjustment effects on turning deceleration. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 1882-1883.	1.6	9
14	Investigation of 3D glenohumeral displacements from 3D reconstruction using biplane X-ray images: Accuracy and reproducibility of the technique and preliminary analysis in rotator cuff tear patients. Journal of Electromyography and Kinesiology, 2016, 29, 12-20.	1.7	9
15	Validity and reliability of different techniques ofÂneck–shaft angle measurement. Clinical Radiology, 2018, 73, 984.e1-984.e9.	1.1	9
16	Golf Swing Biomechanics: A Systematic Review and Methodological Recommendations for Kinematics. Sports, 2022, 10, 91.	1.7	9
17	Turning resistance of a manual wheelchair: a theoretical study. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17, 94-95.	1.6	8
18	Comparison of shoulder kinematic chain models and their influence on kinematics and kinetics in the study of manual wheelchair propulsion. Medical Engineering and Physics, 2019, 69, 153-160.	1.7	8

CHRISTOPHE SAURET

#	Article	IF	CITATIONS
19	Manual wheelchair's turning resistance: swivelling resistance parameters of front and rear wheels on different surfaces. Disability and Rehabilitation: Assistive Technology, 2021, 16, 324-331.	2.2	8
20	Vibration Transmission during Manual Wheelchair Propulsion: A Systematic Review. Vibration, 2021, 4, 444-481.	1.9	8
21	Zeroing of six-component handrim dynamometer for biomechanical studies of manual wheelchair locomotion. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17, 416-422.	1.6	7
22	Shoulder kinetics during start-up and propulsion with a manual wheelchair within the initial phase of uninstructed training. Disability and Rehabilitation: Assistive Technology, 2018, 13, 40-46.	2.2	7
23	Respective contributions of the subject and the wheelchair to the total kinetic energy of manual wheelchair locomotion. Computer Methods in Biomechanics and Biomedical Engineering, 2009, 12, 227-228.	1.6	6
24	On the Influence of the Shoulder Kinematic Chain on Joint Kinematics and Musculotendon Lengths During Wheelchair Propulsion Estimated From Multibody Kinematics Optimization. Journal of Biomechanical Engineering, 2019, 141, .	1.3	6
25	Effects of ellipsoid parameters on scapula motion during manual wheelchair propulsion based on multibody kinematics optimization. A preliminary study. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, S107-S108.	1.6	5
26	Repeatability of wheelchair deceleration tests using a 3-D accelerometer. Computer Methods in Biomechanics and Biomedical Engineering, 2010, 13, 137-138.	1.6	4
27	Error estimations of wheelchair deceleration tests using a 3D accelerometer. Computer Methods in Biomechanics and Biomedical Engineering, 2010, 13, 21-22.	1.6	4
28	Proposal of an index for evaluating pitch instability during actual locomotion with a manual wheelchair. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 130-131.	1.6	4
29	Contribution of vertical and horizontal components of ground reaction forces on global motor moment during a golf swing: a preliminary study. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, S29-S30.	1.6	4
30	Changes in wheelchair biomechanics within the first 120 minutes of practice: spatiotemporal parameters, handrim forces, motor force, rolling resistance and fore-aft stability. Disability and Rehabilitation: Assistive Technology, 2020, 15, 305-313.	2.2	4
31	How Was Studied the Effect of Manual Wheelchair Configuration on Propulsion Biomechanics: A Systematic Review on Methodologies. Frontiers in Rehabilitation Sciences, 2022, 3, .	1.2	4
32	Dynamic calibration of a wheelchair six-component wheel dynamometer rolling on the floor. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14, 67-69.	1.6	3
33	Rolling resistance index of manual wheelchairs. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14, 65-66.	1.6	3
34	Evolutions of the wheelchair user's centre of mass and centre of pressure according to the seat fore-aft position during sprinting: a case study of an elite wheelchair tennis player. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15, 210-211.	1.6	3
35	Computation of the mechanical power of a manual wheelchair user in actual conditions: preliminary results. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15, 173-174.	1.6	3
36	Handrim mechanical power during wheelchair propulsion on level and cross-slope surfaces: a preliminary study. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 124-125.	1.6	3

CHRISTOPHE SAURET

#	Article	IF	CITATIONS
37	Assessment of power losses due to ground contact forces during usual manual wheelchair movements. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, S7-S8.	1.6	3
38	Manual wheelchair biomechanics while overcoming various environmental barriers: A systematic review. PLoS ONE, 2022, 17, e0269657.	2.5	3
39	A penalty method for constrained multibody kinematics optimisation using a Levenberg–Marquardt algorithm. Computer Methods in Biomechanics and Biomedical Engineering, 2023, 26, 864-875.	1.6	3
40	Impact of the subject and wheelchair properties during slope ascent in manual wheelchair: a theoretical study. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 132-133.	1.6	2
41	Vaulting quantification for transfemoral amputees in different gait situations. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 126-127.	1.6	2
42	Influence of patient rotational malpositioning on pelvic parameters assessed on lateral radiographs. Clinical Radiology, 2017, 72, 794.e11-794.e17.	1.1	2
43	Tracking the scapula motion through multibody kinematics optimisation to study manual wheelchair propulsion. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, S171-S172.	1.6	2
44	Drag force mechanical power during a propulsion cycle on a manual wheelchair. Computer Methods in Biomechanics and Biomedical Engineering, 2007, 10, 99-100.	1.6	1
45	Cluster analysis to investigate biomechanical changes during learning of manual wheelchair locomotion: a preliminary study. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 2058-2059.	1.6	1
46	Mechanical simulations as a tool for assessing the influence of wheelchair settings on the propulsion efficiency. Annals of Physical and Rehabilitation Medicine, 2017, 60, e92.	2.3	1
47	Case study: biomechanical analysis of trunk stability in two modes of propulsion of manual wheelchair during start and stabilized speed. Computer Methods in Biomechanics and Biomedical Engineering, 2019, 22, S175-S176.	1.6	1
48	Evaluation of a scapula spinal marker cluster to track the scapula kinematics during manual wheelchair propulsion. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, S121-S122.	1.6	0
49	Determination of the intervertebral spinal axial rotation in a golf player population: a preliminary study. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, S169-S170.	1.6	0
50	Effect of Horizontal Ground Reaction Forces during the Golf Swing: Implications for the Development of Technical Solutions of Golf Swing Analysis. Proceedings (mdpi), 2020, 49, 45.	0.2	0
51	Can early golfing lead to acetabular and lower limb changes? A cross-sectional study. International Journal of Sports Science and Coaching, 0, , 174795412110739.	1.4	0