List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/536126/publications.pdf Version: 2024-02-01

AIREDT SAIEHI

#	Article	IF	CITATIONS
1	Deletion of the G Protein-Coupled Receptor 30 Impairs Glucose Tolerance, Reduces Bone Growth, Increases Blood Pressure, and Eliminates Estradiol-Stimulated Insulin Release in Female Mice. Endocrinology, 2009, 150, 687-698.	1.4	343
2	A Systems Genetics Approach Identifies Genes and Pathways for Type 2 Diabetes in Human Islets. Cell Metabolism, 2012, 16, 122-134.	7.2	323
3	Overexpression of Alpha2A-Adrenergic Receptors Contributes to Type 2 Diabetes. Science, 2010, 327, 217-220.	6.0	266
4	Glucose Inhibition of Glucagon Secretion From Rat Â-Cells Is Mediated by GABA Released From Neighboring Â-Cells. Diabetes, 2004, 53, 1038-1045.	0.3	246
5	Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells. Pflugers Archiv European Journal of Physiology, 2002, 444, 43-51.	1.3	245
6	SUR1 Regulates PKA-independent cAMP-induced Granule Priming in Mouse Pancreatic B-cells. Journal of General Physiology, 2003, 121, 181-197.	0.9	231
7	GLP-1 Inhibits and Adrenaline Stimulates Glucagon Release by Differential Modulation of N- and L-Type Ca2+ Channel-Dependent Exocytosis. Cell Metabolism, 2010, 11, 543-553.	7.2	225
8	Impaired insulin secretion and glucose tolerance in cell-selective CaV1.2 Ca2+ channel null mice. EMBO Journal, 2003, 22, 3844-3854.	3.5	205
9	Reduced Insulin Exocytosis in Human Pancreatic β-Cells With Gene Variants Linked to Type 2 Diabetes. Diabetes, 2012, 61, 1726-1733.	0.3	204
10	A KATP Channel-Dependent Pathway within α Cells Regulates Glucagon Release from Both Rodent and Human Islets of Langerhans. PLoS Biology, 2007, 5, e143.	2.6	203
11	Rapid Insulinotropic Action of Low Doses of Bisphenol-A on Mouse and Human Islets of Langerhans: Role of Estrogen Receptor β. PLoS ONE, 2012, 7, e31109.	1.1	191
12	Glucose inhibits glucagon secretion by a direct effect on mouse pancreatic alpha cells. Diabetologia, 2007, 50, 370-379.	2.9	182
13	Role of KATP Channels in Glucose-Regulated Glucagon Secretion and Impaired Counterregulation in Type 2 Diabetes. Cell Metabolism, 2013, 18, 871-882.	7.2	179
14	An atlas and functional analysis of G-protein coupled receptors in human islets of Langerhans. , 2013, 139, 359-391.		168
15	Secreted Frizzled-Related Protein 4 Reduces Insulin Secretion and Is Overexpressed in Type 2 Diabetes. Cell Metabolism, 2012, 16, 625-633.	7.2	166
16	A Central Role for GRB10 in Regulation of Islet Function in Man. PLoS Genetics, 2014, 10, e1004235.	1.5	164
17	CaV2.3 calcium channels control second-phase insulin release. Journal of Clinical Investigation, 2005, 115, 146-154.	3.9	153
18	Paradoxical Stimulation of Glucagon Secretion by High Glucose Concentrations. Diabetes, 2006, 55, 2318-2323.	0.3	152

#	Article	IF	CITATIONS
19	GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation. Journal of Clinical Investigation, 2015, 125, 4714-4728.	3.9	145
20	ATP-Sensitive K+ Channel-Dependent Regulation of Glucagon Release and Electrical Activity by Glucose in Wild-Type and SUR1-/- Mouse Â-Cells. Diabetes, 2004, 53, S181-S189.	0.3	142
21	Capacitance measurements of exocytosis in mouse pancreatic α-, β- and δ-cells within intact islets of Langerhans. Journal of Physiology, 2004, 556, 711-726.	1.3	137
22	Free fatty acid receptor 1 (FFA1R/GPR40) and its involvement in fatty-acid-stimulated insulin secretion. Cell and Tissue Research, 2005, 322, 207-215.	1.5	135
23	Glucagon Stimulates Exocytosis in Mouse and Rat Pancreatic α-Cells by Binding to Glucagon Receptors. Molecular Endocrinology, 2005, 19, 198-212.	3.7	121
24	Insulin inhibits glucagon release by SGLT2-induced stimulation of somatostatin secretion. Nature Communications, 2019, 10, 139.	5.8	117
25	Reduced insulin secretion correlates with decreased expression of exocytotic genes in pancreatic islets from patients with type 2 diabetes. Molecular and Cellular Endocrinology, 2012, 364, 36-45.	1.6	111
26	Effects of ghrelin on insulin and glucagon secretion: a study of isolated pancreatic islets and intact mice. Regulatory Peptides, 2004, 118, 143-150.	1.9	110
27	A dominant mutation in Snap25 causes impaired vesicle trafficking, sensorimotor gating, and ataxia in the blind-drunk mouse. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2431-2436.	3.3	109
28	Glucagon secretion from pancreatic α-cells. Upsala Journal of Medical Sciences, 2016, 121, 113-119.	0.4	108
29	Somatostatin inhibits exocytosis in rat pancreatic αâ€cells by G i2 â€dependent activation of calcineurin and depriming of secretory granules. Journal of Physiology, 2001, 535, 519-532.	1.3	100
30	Preserving Insulin Secretion in Diabetes by Inhibiting VDAC1 Overexpression and Surface Translocation in β Cells. Cell Metabolism, 2019, 29, 64-77.e6.	7.2	100
31	R-type Ca2+-channel-evoked CICR regulates glucose-induced somatostatin secretion. Nature Cell Biology, 2007, 9, 453-460.	4.6	95
32	GPR40 is expressed in glucagon producing cells and affects glucagon secretion. Biochemical and Biophysical Research Communications, 2007, 354, 240-245.	1.0	94
33	Glucose Generates Coincident Insulin and Somatostatin Pulses and Antisynchronous Glucagon Pulses from Human Pancreatic Islets. Endocrinology, 2009, 150, 5334-5340.	1.4	93
34	Differences in islet-enriched miRNAs in healthy and glucose intolerant human subjects. Biochemical and Biophysical Research Communications, 2011, 404, 16-22.	1.0	93
35	Proghrelin-derived peptides influence the secretion of insulin, glucagon, pancreatic polypeptide and somatostatin: A study on isolated islets from mouse and rat pancreas. Regulatory Peptides, 2008, 146, 230-237.	1.9	89
36	The insulinogenic effect of whey protein is partially mediated by a direct effect of amino acids and GIP on β-cells. Nutrition and Metabolism, 2012, 9, 48.	1.3	88

#	Article	IF	CITATIONS
37	Role of nitric oxide synthase isoforms in glucose-stimulated insulin release. American Journal of Physiology - Cell Physiology, 2002, 283, C296-C304.	2.1	87
38	KATP-channels and glucose-regulated glucagon secretion. Trends in Endocrinology and Metabolism, 2008, 19, 277-284.	3.1	86
39	A Variant in the <i>KCNQ1</i> Gene Predicts Future Type 2 Diabetes and Mediates Impaired Insulin Secretion. Diabetes, 2009, 58, 2409-2413.	0.3	86
40	Palmitate Stimulation of Glucagon Secretion in Mouse Pancreatic Â-Cells Results From Activation of L-Type Calcium Channels and Elevation of Cytoplasmic Calcium. Diabetes, 2004, 53, 2836-2843.	0.3	85
41	γ-Aminobutyric acid (CABA) signalling in human pancreatic islets is altered in type 2 diabetes. Diabetologia, 2012, 55, 1985-1994.	2.9	85
42	Long-Term Exposure to Glucose and Lipids Inhibits Glucose-Induced Insulin Secretion Downstream of Granule Fusion With Plasma Membrane. Diabetes, 2007, 56, 1888-1897.	0.3	83
43	Pleiotropic Effects of GIP on Islet Function Involve Osteopontin. Diabetes, 2011, 60, 2424-2433.	0.3	83
44	CaV2.3 calcium channels control second-phase insulin release. Journal of Clinical Investigation, 2005, 115, 146-154.	3.9	81
45	Palmitate increases L-type Ca2+currents and the size of the readily releasable granule pool in mouse pancreatic β-cells. Journal of Physiology, 2004, 557, 935-948.	1.3	79
46	A1 receptor deficiency causes increased insulin and glucagon secretion in mice. Biochemical Pharmacology, 2007, 74, 1628-1635.	2.0	79
47	α 1-antitrypsin enhances insulin secretion and prevents cytokine-mediated apoptosis in pancreatic β-cells. Islets, 2010, 2, 185-189.	0.9	78
48	Activation of G protein-coupled receptor 30 modulates hormone secretion and counteracts cytokine-induced apoptosis in pancreatic islets of female mice. Molecular and Cellular Endocrinology, 2010, 320, 16-24.	1.6	78
49	Hydrodynamic gene delivery to the pig liver via an isolated segment of the inferior vena cava. Gene Therapy, 2008, 15, 452-462.	2.3	75
50	Insulinotropic and Antidiabetic Effects of 17β-Estradiol and the GPR30 Agonist G-1 on Human Pancreatic Islets. Endocrinology, 2011, 152, 2568-2579.	1.4	75
51	α-cell glucokinase suppresses glucose-regulated glucagon secretion. Nature Communications, 2018, 9, 546.	5.8	72
52	Homologous islet amyloid polypeptide: effects on plasma levels of glucagon, insulin and glucose in the mouse. Diabetes Research and Clinical Practice, 1992, 18, 167-171.	1.1	71
53	GABABreceptor activation inhibits exocytosis in rat pancreatic β-cells by G-protein-dependent activation of calcineurin. Journal of Physiology, 2004, 559, 397-409.	1.3	67
54	Nuclear Factor of Activated T Cells Regulates Osteopontin Expression in Arterial Smooth Muscle in Response to Diabetes-Induced Hyperglycemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 218-224.	1.1	67

#	Article	IF	CITATIONS
55	CAPS1 and CAPS2 Regulate Stability and Recruitment of Insulin Granules in Mouse Pancreatic β Cells. Cell Metabolism, 2008, 7, 57-67.	7.2	65
56	An atlas of C-protein coupled receptor expression and function in human subcutaneous adipose tissue. , 2015, 146, 61-93.		65
57	Decreased expression of genes involved in oxidative phosphorylation in human pancreatic islets from patients with type 2 diabetes. European Journal of Endocrinology, 2011, 165, 589-595.	1.9	64
58	Adrenaline Stimulates Glucagon Secretion by Tpc2-Dependent Ca2+ Mobilization From Acidic Stores in Pancreatic α-Cells. Diabetes, 2018, 67, 1128-1139.	0.3	61
59	Defective Secretion of Islet Hormones in Chromogranin-B Deficient Mice. PLoS ONE, 2010, 5, e8936.	1.1	61
60	Inhibition of Purinoceptors Amplifies Glucose-Stimulated Insulin Release With Removal of its Pulsatility. Diabetes, 2005, 54, 2126-2131.	0.3	60
61	A comparative analysis of human and mouse islet G-protein coupled receptor expression. Scientific Reports, 2017, 7, 46600.	1.6	60
62	Carbon monoxide stimulates insulin release and propagates Ca ²⁺ signals between pancreatic β-cells. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E1055-E1063.	1.8	57
63	Increased Expression of the Diabetes Gene <i>SOX4</i> Reduces Insulin Secretion by Impaired Fusion Pore Expansion. Diabetes, 2016, 65, 1952-1961.	0.3	55
64	Ghrelin activates neuronal constitutive nitric oxide synthase in pancreatic islet cells while inhibiting insulin release and stimulating glucagon release. Regulatory Peptides, 2005, 128, 51-56.	1.9	53
65	Adhesion G Protein-Coupled Receptor G1 (ADGRG1/GPR56) and Pancreatic Î ² -Cell Function. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4637-4645.	1.8	53
66	Pancreatic βâ€cell dysfunction, expression of <scp>iNOS</scp> and the effect of phosphodiesterase inhibitors in human pancreatic islets of type 2 diabetes. Diabetes, Obesity and Metabolism, 2012, 14, 1010-1019.	2.2	52
67	Islet constitutive nitric oxide synthase and glucose regulation of insulin release in mice. Journal of Endocrinology, 1999, 163, 39-48.	1.2	49
68	Mitochondrial proteome analysis reveals altered expression of voltage dependent anion channels in pancreatic β-cells exposed to high glucose. Islets, 2010, 2, 283-292.	0.9	49
69	Antidiabetic Actions of an Estrogen Receptor Î ² Selective Agonist. Diabetes, 2013, 62, 2015-2025.	0.3	49
70	Glucose stimulates the expression and activities of nitric oxide synthases in incubated rat islets: an effect counteracted by GLP-1 through the cyclic AMP/PKA pathway. Cell and Tissue Research, 2005, 319, 221-230.	1.5	48
71	Isolated mouse islets respond to glucose with an initial peak of glucagon release followed by pulses of insulin and somatostatin in antisynchrony with glucagon. Biochemical and Biophysical Research Communications, 2012, 417, 1219-1223.	1.0	46
72	Suppression of Sulfonylurea- and Glucose-Induced Insulin Secretion In Vitro and In Vivo in Mice Lacking the Chloride Transport Protein ClC-3. Cell Metabolism, 2009, 10, 309-315.	7.2	45

#	Article	IF	CITATIONS
73	Excessive Islet NO Generation in Type 2 Diabetic GK Rats Coincides with Abnormal Hormone Secretion and Is Counteracted by GLP-1. PLoS ONE, 2008, 3, e2165.	1.1	43
74	Defective Glucose-Stimulated Insulin Release in the Diabetic Goto-Kakizaki (GK) Rat Coincides with Reduced Activity of the Islet Carbon Monoxide Signaling Pathway. Endocrinology, 2005, 146, 1553-1558.	1.4	42
75	Nitric oxide inhibits, and carbon monoxide activates, islet acid α-glucoside hydrolase activities in parallel with glucose-stimulated insulin secretion. Journal of Endocrinology, 2006, 190, 681-693.	1.2	41
76	Pulses of somatostatin release are slightly delayed compared with insulin and antisynchronous to glucagon. Regulatory Peptides, 2007, 144, 43-49.	1.9	39
77	Dysfunction of the Islet Lysosomal System Conveys Impairment of Glucose-Induced Insulin Release in the Diabetic GK Rat*. Endocrinology, 1999, 140, 3045-3053.	1.4	38
78	Uridine diphosphate (UDP) stimulates insulin secretion by activation of P2Y6 receptors. Biochemical and Biophysical Research Communications, 2008, 370, 499-503.	1.0	38
79	Gastrectomy induces impaired insulin and glucagon secretion: evidence for a gastro-insular axis in mice. Journal of Physiology, 1999, 514, 579-591.	1.3	37
80	Impaired Insulin Exocytosis in Neural Cell Adhesion Moleculeâ^'/â^' Mice Due to Defective Reorganization of the Submembrane F-Actin Network. Endocrinology, 2009, 150, 3067-3075.	1.4	37
81	ADP mediates inhibition of insulin secretion by activation of P2Y13 receptors in mice. Diabetologia, 2010, 53, 1927-1934.	2.9	37
82	Proghrelin peptides: Desacyl ghrelin is a powerful inhibitor of acylated ghrelin, likely to impair physiological effects of acyl ghrelin but not of obestatin. Regulatory Peptides, 2010, 164, 65-70.	1.9	37
83	Glucose Induces Glucagon Release Pulses Antisynchronous with Insulin and Sensitive to Purinoceptor Inhibition. Endocrinology, 2006, 147, 3472-3477.	1.4	36
84	ADP receptor P2Y13 induce apoptosis in pancreatic β-cells. Cellular and Molecular Life Sciences, 2010, 67, 445-453.	2.4	36
85	Absence of adenosine A1 receptors unmasks pulses of insulin release and prolongs those of glucagon and somatostatin. Life Sciences, 2009, 85, 470-476.	2.0	34
86	Acute pancreatitis, expression of inducible nitric oxide synthase and defective insulin secretion. Cell and Tissue Research, 2003, 313, 271-279.	1.5	33
87	GPRC5B a putative glutamate-receptor candidate is negative modulator of insulin secretion. Biochemical and Biophysical Research Communications, 2013, 441, 643-648.	1.0	33
88	Insulin feedback actions: complex effects involving isoforms of islet nitric oxide synthase. Regulatory Peptides, 2004, 122, 109-118.	1.9	32
89	Long-term exposure of mouse pancreatic islets to oleate or palmitate results in reduced glucose-induced somatostatin and oversecretion of glucagon. Diabetologia, 2008, 51, 1689-1693.	2.9	32
90	Anti-diabetic action of all-trans retinoic acid and the orphan G protein coupled receptor GPRC5C in pancreatic β-cells. Endocrine Journal, 2017, 64, 325-338.	0.7	30

#	Article	IF	CITATIONS
91	Rosiglitazone counteracts palmitate-induced β-cell dysfunction by suppression of MAP kinase, inducible nitric oxide synthase and caspase 3 activities. Cellular and Molecular Life Sciences, 2008, 65, 2256-2265.	2.4	28
92	Total Parenteral Nutrition Influences Both Endocrine and Exocrine Function of Rat Pancreas. Pancreas, 1997, 15, 147-153.	0.5	27
93	Somatostatin secretion by Na+-dependent Ca2+-induced Ca2+ release in pancreatic delta cells. Nature Metabolism, 2020, 2, 32-40.	5.1	26
94	Palmitate-Induced β-Cell Dysfunction Is Associated with Excessive NO Production and Is Reversed by Thiazolidinedione-Mediated Inhibition of GPR40 Transduction Mechanisms. PLoS ONE, 2008, 3, e2182.	1.1	26
95	Total Parenteral Nutrition Modulates Hormone Release by Stimulating Expression and Activity of Inducible Nitric Oxide Synthase in Rat Pancreatic Islets. Endocrine, 2001, 16, 097-104.	2.2	25
96	Impaired glucose-stimulated insulin secretion in the GK rat is associated with abnormalities in islet nitric oxide production. Regulatory Peptides, 2008, 151, 139-146.	1.9	25
97	GPR40 protein levels are crucial to the regulation of stimulated hormone secretion in pancreatic islets. Lessons from spontaneous obesity-prone and non-obese type 2 diabetes in rats. Molecular and Cellular Endocrinology, 2013, 381, 150-159.	1.6	25
98	Total Parenteral Nutrition-Stimulated Activity of Inducible Nitric Oxide Synthase in Rat Pancreatic Islets is Suppressed by Glucagon-Like Peptide-1. Hormone and Metabolic Research, 2003, 35, 48-54.	0.7	24
99	The functional impact of G protein-coupled receptor 142 (Gpr142) on pancreatic β-cell in rodent. Pflugers Archiv European Journal of Physiology, 2019, 471, 633-645.	1.3	24
100	Signal Transduction in Islet Hormone Release. Cellular Signalling, 1998, 10, 645-651.	1.7	23
101	The ablation of the Cav2.3/E-type voltage-gated Ca2+ channel causes a mild phenotype despite an altered glucose induced glucagon response in isolated islets of Langerhans. European Journal of Pharmacology, 2005, 511, 65-72.	1.7	23
102	Long-term infusion of nutrients (total parenteral nutrition) suppresses circulating ghrelin in food-deprived rats. Regulatory Peptides, 2005, 131, 82-88.	1.9	23
103	Pathophysiology of type 2 diabetes and the impact of altered metabolic interorgan crosstalk. FEBS Journal, 2023, 290, 620-648.	2.2	22
104	The Nitric Oxide Synthase Inhibitor NG-nitro-L-Arginine Methyl Ester Potentiates Insulin Secretion Stimulated by Glucose and L-Arginine Independently of its Action on ATP-Sensitive K+ Channels. Bioscience Reports, 1998, 18, 19-28.	1.1	20
105	Thrombin stimulates insulin secretion via protease-activated receptor-3. Islets, 2015, 7, e1118195.	0.9	20
106	Defining G protein-coupled receptor peptide ligand expressomes and signalomes in human and mouse islets. Cellular and Molecular Life Sciences, 2018, 75, 3039-3050.	2.4	20
107	Glucose stimulates somatostatin secretion in pancreatic δ-cells by cAMP-dependent intracellular Ca2+ release. Journal of General Physiology, 2019, 151, 1094-1115.	0.9	19
108	GNAS gene is an important regulator of insulin secretory capacity in pancreatic Î ² -cells. Gene, 2019, 715, 144028.	1.0	19

#	Article	IF	CITATIONS
109	Reduced Expression of PLCXD3 Associates With Disruption of Glucose Sensing and Insulin Signaling in Pancreatic β-Cells. Frontiers in Endocrinology, 2019, 10, 735.	1.5	18
110	Biochemical and ultra-structural reactions to parenteral nutrition with two different fat emulsions in rats. Intensive Care Medicine, 1998, 24, 716-724.	3.9	16
111	An Integrative Phenotype–Genotype Approach Using Phenotypic Characteristics from the UAE National Diabetes Study Identifies HSD17B12 as a Candidate Gene for Obesity and Type 2 Diabetes. Genes, 2020, 11, 461.	1.0	16
112	A novel mass spectrometric approach to the analysis of hormonal peptides in extracts of mouse pancreatic islets. FEBS Journal, 2003, 270, 3146-3152.	0.2	15
113	Expression of islet inducible nitric oxide synthase and inhibition of glucose-stimulated insulin release after long-term lipid infusion in the rat is counteracted by PACAP27. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1447-E1455.	1.8	15
114	<i>RORB</i> and <i>RORC</i> associate with human islet dysfunction and inhibit insulin secretion in INS-1 cells. Islets, 2019, 11, 10-20.	0.9	15
115	Experience of islet isolation without neutral protease supplementation. Islets, 2010, 2, 278-282.	0.9	14
116	Orphan G-protein coupled receptor 183 (GPR183) potentiates insulin secretion and prevents glucotoxicity-induced l²-cell dysfunction. Molecular and Cellular Endocrinology, 2020, 499, 110592.	1.6	14
117	Metformin Ameliorates Dysfunctional Traits of Glibenclamide- and Glucose-Induced Insulin Secretion by Suppression of Imposed Overactivity of the Islet Nitric Oxide Synthase-NO System. PLoS ONE, 2016, 11, e0165668.	1.1	14
118	GPRC5B a putative glutamate-receptor candidate is negative modulator of insulin secretion. Biochemical and Biophysical Research Communications, 2013, 441, 643-8.	1.0	13
119	Lowâ€volume hydrodynamic gene delivery to the rat liver via an isolated segment of the inferior vena cava: efficiency, cardiovascular response and intrahepatic vascular dynamics. Journal of Gene Medicine, 2008, 10, 540-550.	1.4	12
120	Imidazolineâ€induced amplification of glucose―and carbacholâ€stimulated insulin release includes a marked suppression of islet nitric oxide generation in the mouse. Acta Physiologica, 2009, 195, 375-383.	1.8	12
121	TPN-evoked dysfunction of islet lysosomal activity mediates impairment of glucose-stimulated insulin release. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E171-E179.	1.8	11
122	Selective induction of inducible nitric oxide synthase in pancreatic islet of rat after an intravenous glucose or intralipid challenge. Nutrition, 2006, 22, 652-660.	1.1	11
123	Abnormally decreased NO and augmented CO production in islets of the leptin-deficient ob/ob mouse might contribute to explain hyperinsulinemia and islet survival in leptin-resistant type 2 obese diabetes. Regulatory Peptides, 2011, 170, 43-51.	1.9	10
124	Synapsins I and II Are Not Required for Insulin Secretion from Mouse Pancreatic Î ² -cells. Endocrinology, 2012, 153, 2112-2119.	1.4	10
125	Insulin release transduction mechanism through acid glucan 1,4-α-glucosidase activation is Ca2+ regulated. American Journal of Physiology - Endocrinology and Metabolism, 1998, 274, E459-E468.	1.8	9
126	Reduced Expression of Chl1 gene Impairs Insulin Secretion by Down-Regulating the Expression of Key Molecules of β-cell Function. Experimental and Clinical Endocrinology and Diabetes, 2021, 129, 864-872.	0.6	9

#	ARTICLE	IF	CITATIONS
127	Role of osteopontin and its regulation in pancreatic islet. Biochemical and Biophysical Research Communications, 2018, 495, 1426-1431.	1.0	8
128	Changes in islet glucan-1,4-α-glucosidase activity modulate sulphonylurea-induced but not cholinergic insulin secretion. European Journal of Pharmacology, 1993, 243, 185-191.	1.7	6
129	Inhibitory effect of UDP-glucose on cAMP generation and insulin secretion. Journal of Biological Chemistry, 2020, 295, 15245-15252.	1.6	6
130	Modulation of islet G-proteins, α-glucosidehydrolase inhibition and insulin release stimulated by various secretagogues. Bioscience Reports, 1996, 16, 23-34.	1.1	5
131	Does Epidermal Growth Factor Participate in the Regulation of Glucose, Insulin and Glucagon Levels?. European Surgical Research, 2006, 38, 377-384.	0.6	5
132	Activation of imidazoline receptor I 2 , and improved pancreatic β-cell function in human islets. Journal of Diabetes and Its Complications, 2018, 32, 813-818.	1.2	3
133	Expression levels of enzymes generating NO and CO in islets of murine and human diabetes. Biochemical and Biophysical Research Communications, 2019, 520, 473-478.	1.0	3
134	Dimethyloxalylglycine (DMOG) and the Caspase Inhibitor "Ac-LETD-CHO―Protect Neuronal ND7/23 Cells of Gluocotoxicity. Experimental and Clinical Endocrinology and Diabetes, 2021, 129, 420-428.	0.6	3
135	COVID-19 and Possible Pharmacological Preventive Options. Journal of Clinical Medicine Research, 2020, 12, 758-772.	0.6	3
136	Defective insulin secretion during total parenteral nutrition in rat and its normalization by pituitary adenylate cyclase-activating polypeptide 27. Regulatory Peptides, 2004, 119, 83-91.	1.9	2
137	Secretory and electrophysiological characteristics of insulin cells from gastrectomized mice: Evidence for the existence of insulinotropic agents in the stomach. Regulatory Peptides, 2007, 139,	1.9	2