Helga Medić

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5361135/publications.pdf Version: 2024-02-01

Ηει αλ Μεριάτ

#	Article	IF	CITATIONS
1	Differentiation of dry-cured hams from different processing methods by means of volatile compounds, physico-chemical and sensory analysis. Meat Science, 2018, 137, 217-227.	5.5	109
2	Determination of volatile compounds and quality parameters of traditional Istrian dry-cured ham. Meat Science, 2014, 96, 1409-1416.	5.5	90
3	Characterization of traditional Istrian dry-cured ham by means of physical and chemical analyses and volatile compounds. Meat Science, 2011, 88, 786-790.	5.5	74
4	The impact of frozen storage duration on physical, chemical and microbiological properties of pork. Meat Science, 2018, 140, 119-127.	5.5	58
5	Characterization of volatile compounds, physico-chemical and sensory characteristics of smoked dry-cured ham. Journal of Food Science and Technology, 2016, 53, 4093-4105.	2.8	44
6	Resistance of Listeria monocytogenes, Escherichia coli O157:H7 and Campylobacter jejuni after exposure to repetitive cycles of mild bactericidal treatments. Food Microbiology, 2009, 26, 889-895.	4.2	43
7	Bioelectrical impedance analysis of frozen sea bass (Dicentrarchus labrax). Journal of Food Engineering, 2008, 88, 263-271.	5.2	41
8	Enrichment of eggs in n-3 polyunsaturated fatty acids by feeding hens with different amount of linseed oil in diet. Food Chemistry, 2012, 135, 1563-1568.	8.2	39
9	Treatment of Escherichia coli O157:H7 with lactic acid, neutralized electrolyzed oxidizing water and chlorine dioxide followed by growth under sub-optimal conditions of temperature, pH and modified atmosphere. Food Microbiology, 2009, 26, 629-637.	4.2	31
10	Optimization of parameters for histamine detection in fish muscle extracts by surfaceâ€enhanced Raman spectroscopy using silver colloid SERS substrates. Journal of Raman Spectroscopy, 2017, 48, 64-72.	2.5	22
11	Prevalence of Listeria monocytogenes and the other Listeria spp. in cakes in Croatia. Food Control, 2004, 15, 213-216.	5.5	21
12	Differencing sea bass (<i>Dicentrarchus labrax</i>) fillets frozen in different conditions by impedance measurements. International Journal of Food Science and Technology, 2012, 47, 1757-1764.	2.7	11
13	Influence of Muscle Type on Physicochemical Parameters, Lipolysis, Proteolysis, and Volatile Compounds throughout the Processing of Smoked Dry-Cured Ham. Foods, 2021, 10, 1228.	4.3	10
14	Proteolysis and protein oxidation throughout the smoked dry-cured ham process. Food Chemistry, 2021, 362, 130207.	8.2	8
15	Effect of citric acid addition on functional properties of pasteurized liquid whole eggs. Journal of Food Science and Technology, 2021, 58, 985-995.	2.8	4
16	Quality parameters and shelf-life of smoked Dalmatian dry-cured ham packed in bio-based and plastic bilayer pouches. Journal of Stored Products Research, 2021, 94, 101889.	2.6	4
17	Influence of different pig genotype on aroma, colour and fatty acid composition of smoked dry-cured ham. Meso, 2019, 21, 548-561.	0.1	3
18	A study of chemical profiles and appearance of white crystals in Istrian dry-cured ham: effect of desalting. Italian Journal of Animal Science, 2008, 7, 373-382.	1.9	2

#	Article	IF	CITATIONS
19	Polycyclic aromatic hydrocarbons in four different types of Croatian dry-cured hams. Meso, 2019, 21, 458-468.	0.1	2
20	Utjecaj tehnoloÅ;kog procesa proizvodnje na udio masti, sastav masnih kiselina i stupanj oksidacije masti u dimljenom prÅ;utu. Meso, 2021, 23, 310-321.	0.1	0