
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5360932/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Throughput Monoclonal Antibody Discovery from Phage Libraries: Challenging the Current Preclinical Pipeline to Keep the Pace with the Increasing mAb Demand. Cancers, 2022, 14, 1325.	3.7	14
2	Novel Bi-Specific Immuno-Modulatory Tribodies Potentiate T Cell Activation and Increase Anti-Tumor Efficacy. International Journal of Molecular Sciences, 2022, 23, 3466.	4.1	6
3	Novel Combinations of Human Immunomodulatory mAbs Lacking Cardiotoxic Effects for Therapy of TNBC. Cancers, 2022, 14, 121.	3.7	7
4	A Novel Human Neutralizing mAb Recognizes Delta, Gamma and Omicron Variants of SARS-CoV-2 and Can Be Used in Combination with Sotrovimab. International Journal of Molecular Sciences, 2022, 23, 5556.	4.1	3
5	Immune checkpoint inhibitor therapy increases systemic SDF-1, cardiac DAMPs Fibronectin-EDA, S100/Calgranulin, Galectine-3 and NLRP3-MyD88-chemokine pathways Journal of Clinical Oncology, 2022, 40, e14516-e14516.	1.6	0
6	Novel human neutralizing mAbs specific for Spike-RBD of SARS-CoV-2. Scientific Reports, 2021, 11, 11046.	3.3	13
7	Immunomodulatory mAbs as Tools to Investigate on Cis-Interaction of PD-1/PD-L1 on Tumor Cells and to Set Up Methods for Early Screening of Safe and Potent Combinatorial Treatments. Cancers, 2021, 13, 2858.	3.7	12
8	Long-chain polyphosphates impair SARS-CoV-2 infection and replication. Science Signaling, 2021, 14, .	3.6	27
9	Interactions of Spike-RBD of SARS-CoV-2 and Platelet Factor 4: New Insights in the Etiopathogenesis of Thrombosis. International Journal of Molecular Sciences, 2021, 22, 8562.	4.1	20
10	88â€fDifferential cardiotoxicity of immune checkpoint inhibitors involves damps fibronectin-EDA, calgranulin, galectine-3, and associated nlrp3 inflammasome-interleukins pathway in preclinical models. European Heart Journal Supplements, 2021, 23, .	0.1	0
11	Isolation of Two Novel Human Anti-CTLA-4 mAbs with Intriguing Biological Properties on Tumor and NK Cells. Cancers, 2020, 12, 2204.	3.7	12
12	Evidences of CTLA-4 and PD-1 Blocking Agents-Induced Cardiotoxicity in Cellular and Preclinical Models. Journal of Personalized Medicine, 2020, 10, 179.	2.5	41
13	Aptamer targeted therapy potentiates immune checkpoint blockade in triple-negative breast cancer. Journal of Experimental and Clinical Cancer Research, 2020, 39, 180.	8.6	38
14	Ipilimumab and Its Derived EGFR Aptamer-Based Conjugate Induce Efficient NK Cell Activation against Cancer Cells. Cancers, 2020, 12, 331.	3.7	27
15	Novel Human Bispecific Aptamer–Antibody Conjugates for Efficient Cancer Cell Killing. Cancers, 2019, 11, 1268.	3.7	38
16	Novel Human Anti-PD-L1 mAbs Inhibit Immune-Independent Tumor Cell Growth and PD-L1 Associated Intracellular Signalling. Scientific Reports, 2019, 9, 13125.	3.3	44
17	Cardiotoxicity and pro-inflammatory effects of the immune checkpoint inhibitor Pembrolizumab associated to Trastuzumab. International Journal of Cardiology, 2019, 292, 171-179.	1.7	44
18	T-cell Activating Tribodies as a Novel Approach for Efficient Killing of ErbB2-positive Cancer Cells. Journal of Immunotherapy, 2019, 42, 1-10.	2.4	11

#	Article	IF	CITATIONS
19	Rapid Affinity Maturation of Novel Anti-PD-L1 Antibodies by a Fast Drop of the Antigen Concentration and FACS Selection of Yeast Libraries. BioMed Research International, 2019, 2019, 1-22.	1.9	9
20	A long non-coding SINEUP RNA boosts semi-stable production of fully human monoclonal antibodies in HEK293E cells. MAbs, 2018, 10, 730-737.	5.2	25
21	Ranolazine Attenuates Trastuzumab-Induced Heart Dysfunction by Modulating ROS Production. Frontiers in Physiology, 2018, 9, 38.	2.8	36
22	Massive parallel screening of phage libraries for the generation of repertoires of human immunomodulatory monoclonal antibodies. MAbs, 2018, 10, 1-13.	5.2	31
23	Cardiotoxic effects of the novel approved anti-ErbB2 agents and reverse cardioprotective effects of ranolazine. OncoTargets and Therapy, 2018, Volume 11, 2241-2250.	2.0	26
24	Superior Suppression of ErbB2-positive Tumor Cells by a Novel Human Triparatopic Tribody. Journal of Immunotherapy, 2017, 40, 117-128.	2.4	7
25	Antineoplastic-related cardiotoxicity, morphofunctional aspects in a murine model: contribution of the new tool 2D-speckle tracking. OncoTargets and Therapy, 2016, Volume 9, 6785-6794.	2.0	24
26	Pathophysiology of cardiotoxicity from target therapy and angiogenesis inhibitors. Journal of Cardiovascular Medicine, 2016, 17, e19-e26.	1.5	47
27	A Practical Approach for Management of QT Prolongation Induced by Anticancer Drugs. Oncologist, 2016, , .	3.7	1
28	Trastuzumab and target-therapy side effects: Is still valid to differentiate anthracycline Type I from Type II cardiomyopathies?. Human Vaccines and Immunotherapeutics, 2016, 12, 1124-1131.	3.3	46
29	Novel human anti-claudin 1 mAbs inhibit hepatitis C virus infection and may synergize with anti-SRB1 mAb. Journal of General Virology, 2016, 97, 82-94.	2.9	16
30	A novel fully human anti-NCL immunoRNase for triple-negative breast cancer therapy. Oncotarget, 2016, 7, 87016-87030.	1.8	23
31	One-Step Recovery of scFv Clones from High-Throughput Sequencing-Based Screening of Phage Display Libraries Challenged to Cells Expressing Native Claudin-1. BioMed Research International, 2015, 2015, 1-9.	1.9	16
32	Human anti-nucleolin recombinant immunoagent for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9418-9423.	7.1	53
33	Effect of ranolazine administered after trastuzumab treatment on cardiotoxicity in mice Journal of Clinical Oncology, 2015, 33, 597-597.	1.6	Ο
34	Dramatic Potentiation of the Antiviral Activity of HIV Antibodies by Cholesterol Conjugation. Journal of Biological Chemistry, 2014, 289, 35015-35028.	3.4	17
35	Effects of a human compact anti-ErbB2 antibody on gastric cancer. Gastric Cancer, 2014, 17, 107-115.	5.3	6
36	Ranolazine protects from doxorubicinâ€induced oxidative stress and cardiac dysfunction. European Journal of Heart Failure, 2014, 16, 358-366.	7.1	76

#	Article	IF	CITATIONS
37	Effects of a second-generation human anti-ErbB2 ImmunoRNase on trastuzumab-resistant tumors and cardiac cells. Protein Engineering, Design and Selection, 2014, 27, 83-88.	2.1	16
38	Ranolazine and prevention of trastuzumab-cardiotoxicity in experimental models Journal of Clinical Oncology, 2014, 32, e13508-e13508.	1.6	0
39	A novel fully human antitumor ImmunoRNase resistant to the RNase inhibitor. Protein Engineering, Design and Selection, 2013, 26, 243-248.	2.1	17
40	Effects of a human compact anti-ErbB2 antibody on prostate cancer. Oncology Reports, 2012, 28, 297-302.	2.6	3
41	Detection, monitoring, and management of trastuzumabâ€induced left ventricular dysfunction: an actual challenge. European Journal of Heart Failure, 2012, 14, 130-137.	7.1	77
42	Mechanisms of cardiotoxicity associated with ErbB2 inhibitors. Breast Cancer Research and Treatment, 2012, 134, 595-602.	2.5	56
43	Comparison of preclinical cardiotoxic effects of different ErbB2 inhibitors. Breast Cancer Research and Treatment, 2012, 133, 511-521.	2.5	43
44	A novel fully human antitumour immunoRNase targeting ErbB2-positive tumours. British Journal of Cancer, 2011, 104, 1716-1723.	6.4	35
45	A novel ErbB2 epitope targeted by human antitumor immunoagents. FEBS Journal, 2011, 278, 1156-1166.	4.7	12
46	Two novel human anti-ErbB2 immunoagents are active on trastuzumab-resistant tumours. British Journal of Cancer, 2010, 102, 513-519.	6.4	29
47	Cardiotoxic effects, or lack thereof, of antiâ€ErbB2 immunoagents. FASEB Journal, 2009, 23, 3171-3178.	0.5	63
48	Human anti rbB2 immunoagents – immunoRNases and compact antibodies. FEBS Journal, 2009, 276, 1527-1535.	4.7	19
49	Differential binding of human immunoagents and Herceptin to the ErbB2 receptor. FEBS Journal, 2008, 275, 4967-4979.	4.7	33
50	A Novel Human Antitumor Dimeric ImmunoRNase. Journal of Immunotherapy, 2008, 31, 440-445.	2.4	13
51	From ImmunoToxins to ImmunoRNases. Current Pharmaceutical Biotechnology, 2008, 9, 210-214.	1.6	38
52	Combinatorial experimental protocols for Erbicin-derived immunoagents and Herceptin. British Journal of Cancer, 2007, 97, 1354-1360.	6.4	11
53	Intracellular route and mechanism of action of ERB-hRNase, a human anti-ErbB2 anticancer immunoagent. FEBS Letters, 2007, 581, 296-300.	2.8	31
54	Biological properties of a human compact anti-ErbB2 antibody. Carcinogenesis, 2005, 26, 1890-1895.	2.8	37

#	Article	IF	CITATIONS
55	A human, compact, fully functional anti-ErbB2 antibody as a novel antitumour agent. British Journal of Cancer, 2004, 91, 1200-1204.	6.4	41
56	A Fully Human Antitumor ImmunoRNase Selective for ErbB-2-Positive Carcinomas. Cancer Research, 2004, 64, 4870-4874.	0.9	67
57	Crystal structure of the dimeric unswapped form of bovine seminal ribonuclease. FEBS Letters, 2003, 554, 105-110.	2.8	25
58	A new RNase-based immunoconjugate selectively cytotoxic for ErbB2-overexpressing cells. FEBS Letters, 2002, 516, 208-212.	2.8	32
59	A new human antitumor immunoreagent specific for ErbB2. Clinical Cancer Research, 2002, 8, 1710-9.	7.0	46
60	The RFG oligomerization domain mediates kinase activation and re-localization of the RET/PTC3 oncoprotein to the plasma membrane. Oncogene, 2001, 20, 599-608.	5.9	57
61	Trypsin Sheds Light on the Singular Case of Seminal RNase, a Dimer with Two Quaternary Conformations. Journal of Biological Chemistry, 2000, 275, 8000-8006.	3.4	10
62	Thermodynamic Stability of the Two Isoforms of Bovine Seminal Ribonucleaseâ€. Biochemistry, 2000, 39, 7964-7972.	2.5	11
63	A dimeric mutant of human pancreatic ribonuclease with selective cytotoxicity toward malignant cells. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 7768-7773.	7.1	66
64	Crystallization of multiple forms of bovine seminal ribonuclease in the liganded and unliganded state. Journal of Crystal Growth, 1999, 196, 305-312.	1.5	9
65	Selective and asymmetric action of trypsin on the dimeric forms of seminal RNase. Protein Science, 1998, 7, 2653-2658.	7.6	6
66	Effects of Protein RNase Inhibitor and Substrate on the Quaternary Structures of Bovine Seminal RNaseâ€. Biochemistry, 1996, 35, 3880-3885.	2.5	39
67	A Study of the Intracellular Routing of Cytotoxic Ribonucleases. Journal of Biological Chemistry, 1995, 270, 17476-17481.	3.4	86
68	The antitumor action of seminal ribonuclease and its quaternary conformations. FEBS Letters, 1995, 359, 31-34.	2.8	71
69	Oncolytic Adenoviral Vector-Mediated Expression of an Anti-PD-L1-scFv Improves Anti-Tumoral Efficacy in a Melanoma Mouse Model. Frontiers in Oncology, 0, 12, .	2.8	9